scholarly journals Monitoring of Particulate Matter Emissions from 3D Printing Activity in the Home Setting

Sensors ◽  
2021 ◽  
Vol 21 (9) ◽  
pp. 3247
Author(s):  
Shirin Khaki ◽  
Emer Duffy ◽  
Alan F. Smeaton ◽  
Aoife Morrin

Consumer-level 3D printers are becoming increasingly prevalent in home settings. However, research shows that printing with these desktop 3D printers can impact indoor air quality (IAQ). This study examined particulate matter (PM) emissions generated by 3D printers in an indoor domestic setting. Print filament type, brand, and color were investigated and shown to all have significant impacts on the PM emission profiles over time. For example, emission rates were observed to vary by up to 150-fold, depending on the brand of a specific filament being used. Various printer settings (e.g., fan speed, infill density, extruder temperature) were also investigated. This study identifies that high levels of PM are triggered by the filament heating process and that accessible, user-controlled print settings can be used to modulate the PM emission from the 3D printing process. Considering these findings, a low-cost home IAQ sensor was evaluated as a potential means to enable a home user to monitor PM emissions from their 3D printing activities. This sensing approach was demonstrated to detect the timepoint where the onset of PM emission from a 3D print occurs. Therefore, these low-cost sensors could serve to inform the user when PM levels in the home become elevated significantly on account of this activity and furthermore, can indicate the time at which PM levels return to baseline after the printing process and/or after adding ventilation. By deploying such sensors at home, domestic users of 3D printers can assess the impact of filament type, color, and brand that they utilize on PM emissions, as well as be informed of how their selected print settings can impact their PM exposure levels.

Author(s):  
Sakthi Kumar Arul Prakash ◽  
Tobias Mahan ◽  
Glen Williams ◽  
Christopher McComb ◽  
Jessica Menold ◽  
...  

Abstract 3D printing systems have expanded the access to low cost, rapid methods for attaining physical prototypes or products. However, a cyber attack, system error, or operator error on a 3D printing system may result in catastrophic situations, ranging from complete product failure, to small types of defects which weaken the structural integrity of the product, making it unreliable for its intended use. Such defects can be introduced early-on via solid models or through G-codes for printer movements at a later stage. Previous works have studied the use of image classifiers to predict defects in real-time as a print is in progress and also by studying the printed entity once the print is complete. However, a major restriction in the functionality of these methods is the availability of a dataset capturing diverse attacks on printed entities or the printing process. This paper introduces a visual inspection technique that analyzes the amplitude and phase variations of the print head platform arising through induced system manipulations. The method uses an image sequence of a 3D printing process captured via an off the shelf camera to perform an offline multi-scale, multi-orientation decomposition to amplify imperceptible system movements attributable to a change in system parameters. The authors hypothesize that a change in the amplitude envelope and instantaneous phase response as a result of a change in the end effector translational instructions, to be correlated with an AM system compromise. A case study is presented that tests the hypothesis and provides statistical validity in support of the method. The method has the potential to enhance the robustness of cyber-physical systems such as 3D printers that rely on secure, high quality hardware and software to perform optimally.


Polymers ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2518
Author(s):  
Nunzio Cennamo ◽  
Lorena Saitta ◽  
Claudio Tosto ◽  
Francesco Arcadio ◽  
Luigi Zeni ◽  
...  

In this work, a novel approach to realize a plasmonic sensor is presented. The proposed optical sensor device is designed, manufactured, and experimentally tested. Two photo-curable resins are used to 3D print a surface plasmon resonance (SPR) sensor. Both numerical and experimental analyses are presented in the paper. The numerical and experimental results confirm that the 3D printed SPR sensor presents performances, in term of figure of merit (FOM), very similar to other SPR sensors made using plastic optical fibers (POFs). For the 3D printed sensor, the measured FOM is 13.6 versus 13.4 for the SPR-POF configuration. The cost analysis shows that the 3D printed SPR sensor can be manufactured at low cost (∼15 €) that is competitive with traditional sensors. The approach presented here allows to realize an innovative SPR sensor showing low-cost, 3D-printing manufacturing free design and the feasibility to be integrated with other optical devices on the same plastic planar support, thus opening undisclosed future for the optical sensor systems.


2020 ◽  
Vol 44 (2) ◽  
pp. 69-73
Author(s):  
Paul D. Bishop ◽  
Thomas Fultz ◽  
Lisa Smith ◽  
Ryan S. Klatte ◽  
Francis Loth ◽  
...  

Three-dimensional (3D) printing of anatomical structures has yielded valuable models for simulation, education, and surgical planning applications. Applications for 3D printing have continued to expand to include some ultrasound applications. The goal of this effort was to evaluate if a 3D printed model of a superficial femoral artery (SFA) would have realistic ultrasound characteristics. A computed tomography scan was 3D reconstructed and segmented using TeraRecon Aquarius Intuition software (TeraRecon, Foster City, California) to obtain an atherosclerotic SFA geometry. Both the lumen geometry and calcified plaque geometry of the SFA were exported as a stereolithographic (STL) file. The STL file was printed with An Object350 Connex 3D System using 2 different materials selected based on published elastic modulus data. VeroWhite was selected for the calcified plaque and TangoPlus Clear was selected for the artery wall. After printing, the SFA model was imaged in a water bath with a Phillips IU22 duplex ultrasound console and L12-9 ultrasound probe. Ultrasound imaging of the SFA model yielded grayscale views of artery geometry. Lumen geometry of the SFA model was similar to the actual artery geometry. Ultrasound was able to discern between the 3D print materials and visualize regions with stenosis. Suboptimal ultrasound parameters of echogenicity and wave velocity noted to differ from biological tissue. Total 3D print material cost was estimated at below $20. Although the 3D printed model did not have fully accurate ultrasound characteristics, it still provided realistic imaging. With further research, 3D printed models may offer a low-cost alternative for ultrasound phantoms.


Author(s):  
Laxmi Poudel ◽  
Chandler Blair ◽  
Jace McPherson ◽  
Zhenghui Sha ◽  
Wenchao Zhou

Abstract While three-dimensional (3D) printing has been making significant strides over the past decades, it still trails behind mainstream manufacturing due to its lack of scalability in both print size and print speed. Cooperative 3D printing (C3DP) is an emerging technology that holds the promise to mitigate both of these issues by having a swarm of printhead-carrying mobile robots working together to finish a single print job cooperatively. In our previous work, we have developed a chunk-based printing strategy to enable the cooperative 3D printing with two fused deposition modeling (FDM) mobile 3D printers, which allows each of them to print one chunk at a time without interfering with the other and the printed part. In this paper, we present a novel method in discretizing the continuous 3D printing process, where the desired part is discretized into chunks, resulting in multi-stage 3D printing process. In addition, the key contribution of this study is the first working scaling strategy for cooperative 3D printing based on simple heuristics, called scalable parallel arrays of robots for 3DP (SPAR3), which enables many mobile 3D printers to work together to reduce the total printing time for large prints. In order to evaluate the performance of the printing strategy, a framework is developed based on directed dependency tree (DDT), which provides a mathematical and graphical description of dependency relationships and sequence of printing tasks. The graph-based framework can be used to estimate the total print time for a given print strategy. Along with the time evaluation metric, the developed framework provides us with a mathematical representation of geometric constraints that are temporospatially dynamic and need to be satisfied in order to achieve collision-free printing for any C3DP strategy. The DDT-based evaluation framework is then used to evaluate the proposed SPAR3 strategy. The results validate the SPAR3 as a collision-free strategy that can significantly shorten the printing time (about 11 times faster with 16 robots for the demonstrated examples) in comparison with the traditional 3D printing with single printhead.


2017 ◽  
Vol 23 (6) ◽  
pp. 1020-1031 ◽  
Author(s):  
Miguel Fernandez-Vicente ◽  
Ana Escario Chust ◽  
Andres Conejero

Purpose The purpose of this paper is to describe a novel design workflow for the digital fabrication of custom-made orthoses (CMIO). It is intended to provide an easier process for clinical practitioners and orthotic technicians alike. It further functions to reduce the dependency of the operators’ abilities and skills. Design/methodology/approach The technical assessment covers low-cost three-dimensional (3D) scanning, free computer-aided design (CAD) software, and desktop 3D printing and acetone vapour finishing. To analyse its viability, a cost comparison was carried out between the proposed workflow and the traditional CMIO manufacture method. Findings The results show that the proposed workflow is a technically feasible and cost-effective solution to improve upon the traditional process of design and manufacture of custom-made static trapeziometacarpal (TMC) orthoses. Further studies are needed for ensuring a clinically feasible approach and for estimating the efficacy of the method for the recovery process in patients. Social implications The feasibility of the process increases the impact of the study, as the great accessibility to this type of 3D printers makes the digital fabrication method easier to be adopted by operators. Originality/value Although some research has been conducted on digital fabrication of CMIO, few studies have investigated the use of desktop 3D printing in any systematic way. This study provides a first step in the exploration of a new design workflow using low-cost digital fabrication tools combined with non-manual finishing.


Author(s):  
Frank Celentano ◽  
Nicholas May ◽  
Edward Simoneau ◽  
Richard DiPasquale ◽  
Zahra Shahbazi ◽  
...  

Professional musicians today often invest in obtaining antique or vintage instruments. These pieces can be used as collector items or more practically, as performance instruments to give a unique sound of a past music era. Unfortunately, these relics are rare, fragile, and particularly expensive to obtain for a modern day musician. The opportunity to reproduce the sound of an antique instrument through the use of additive manufacturing (3D printing) can make this desired product significantly more affordable. 3D printing allows for duplication of unique parts in a low cost and environmentally friendly method, due to its minimal material waste. Additionally, it allows complex geometries to be created without the limitations of other manufacturing techniques. This study focuses on the primary differences, particularly sound quality and comfort, between saxophone mouthpieces that have been 3D printed and those produced by more traditional methods. Saxophone mouthpieces are commonly derived from a milled blank of either hard rubber, ebonite or brass. Although 3D printers can produce a design with the same or similar materials, they are typically created in a layered pattern. This can potentially affect the porosity and surface of a mouthpiece, ultimately affecting player comfort and sound quality. To evaluate this, acoustic tests will be performed. This will involve both traditionally manufactured mouthpieces and 3D prints of the same geometry created from x-ray scans obtained using a ZEISS Xradia Versa 510. The scans are two dimensional images which go through processes of reconstruction and segmentation, which is the process of assigning material to voxels. The result is a point cloud model, which can be used for 3D printing. High quality audio recordings of each mouthpiece will be obtained and a sound analysis will be performed. The focus of this analysis is to determine what qualities of the sound are changed by the manufacturing method and how true the sound of a 3D printed mouthpiece is to its milled counterpart. Additive manufacturing can lead to more inconsistent products of the original design due to the accuracy, repeatability and resolution of the printer, as well as the layer thickness. In order for additive manufacturing to be a common practice of mouthpiece manufacturing, the printer quality must be tested for its precision to an original model. The quality of a 3D print can also have effects on the comfort of the player. Lower quality 3D prints have an inherent roughness which can cause discomfort and difficulty for the musician. This research will determine the effects of manufacturing method on the sound quality and overall comfort of a mouthpiece. In addition, we will evaluate the validity of additive manufacturing as a method of producing mouthpieces.


2016 ◽  
Vol 2 (1) ◽  
pp. 44-47 ◽  
Author(s):  
Carolina Cardona ◽  
Abigail H Curdes ◽  
Aaron J Isaacs

Fused filament fabrication (FFF) is one of the most popular additive manufacturing (3D printing) technologies due to the growing availability of low-cost desktop 3D printers and the relatively low cost of the thermoplastic filament used in the 3D printing process. Commercial filament suppliers, 3D printer manufacturers, and end-users regard filament diameter tolerance as an important indicator of the 3D printing quality. Irregular filament diameter affects the flow rate during the filament extrusion, which causes poor surface quality, extruder jams, irregular gaps in-between individual extrusions, and/or excessive overlap, which eventually results in failed 3D prints. Despite the important role of the diameter consistency in the FFF process, few studies have addressed the required tolerance level to achieve highest 3D printing quality. The objective of this work is to develop the testing methods to measure the filament tolerance and control the filament fabrication process. A pellet-based extruder is utilized to fabricate acrylonitrile butadiene styrene (ABS) filament using a nozzle of 1.75 mm in diameter. Temperature and extrusion rate are controlled parameters. An optical comparator and an array of digital calipers are used to measure the filament diameter. The results demonstrate that it is possible to achieve high diameter consistency and low tolerances (0.01mm) at low extrusion temperature (180 °C) and low extrusion rate (10 in/min). 


2020 ◽  
Vol 72 (6) ◽  
pp. 811-818 ◽  
Author(s):  
Muammel M. Hanon ◽  
Róbert Marczis ◽  
László Zsidai

Purpose The purpose of this paper is to examine the impact of three-dimensional (3D)-printing process settings (particularly print orientation) on the tribological properties of different polymers. Design/methodology/approach In this study, fused deposition modelling 3D-printing technology was used for fabricating the specimens. To evaluate the influence of print orientation, the test pieces were manufactured horizontally (X) and vertically (Z). The tribological properties of various printed polymers, which are polylactide acid, high tensile/high temperature-polylactide acid and polyethylene terephthalate-glycol have been studied. The tribological tests have been carried out under reciprocating sliding and dry condition. Findings The results show that the presence of various orientations during the 3D-printing process makes a difference in the coefficient of friction and the wear depth values. Findings suggest that printing structure in the horizontal orientation (X) assists in reducing friction and wear. Originality/value To date, there has been very limited research on the tribology of objects produced by 3D printing. This work was made as an attempt to pave the way for future research on the science of tribology of 3D-printed polymers.


Fourth Industrial Revolution gave birth to few different technologies, not known until now. One of them is 3D printing. If subtracting manufacturing is part of Industrial Revolution 3, Additive manufacturing is for sure part of Industrial Revolution 4.0. 3D printing has the potential to transform science and technology by creating bespoke, low-cost appliances that previously required dedicated facilities to make. 3D printers are used to initiate chemical reactions by printing the reagents directly into a 3D reactionware matrix, and so put reactionware design, construction and operation under digital control. Some models of 3D Printers can print uniquely shaped sugar confections in flavors such as chocolate, vanilla, mint, cherry, sour apple and watermelon. They can also print custom cake toppers–presumably in the likeness of the guest of honor.


Sign in / Sign up

Export Citation Format

Share Document