scholarly journals A Simple Neural Network for Collision Detection of Collaborative Robots

Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4235
Author(s):  
Michał Czubenko ◽  
Zdzisław Kowalczuk

Due to the epidemic threat, more and more companies decide to automate their production lines. Given the lack of adequate security or space, in most cases, such companies cannot use classic production robots. The solution to this problem is the use of collaborative robots (cobots). However, the required equipment (force sensors) or alternative methods of detecting a threat to humans are usually quite expensive. The article presents the practical aspect of collision detection with the use of a simple neural architecture. A virtual force and torque sensor, implemented as a neural network, may be useful in a team of collaborative robots. Four different approaches are compared in this article: auto-regressive (AR), recurrent neural network (RNN), convolutional long short-term memory (CNN-LSTM) and mixed convolutional LSTM network (MC-LSTM). These architectures are analyzed at different levels of input regression (motor current, position, speed, control velocity). This sensor was tested on the original CURA6 robot prototype (Cooperative Universal Robotic Assistant 6) by Intema. The test results indicate that the MC-LSTM architecture is the most effective with the regression level set at 12 samples (at 24 Hz). The mean absolute prediction error obtained by the MC-LSTM architecture was approximately 22 Nm. The conducted external test (72 different signals with collisions) shows that the presented architecture can be used as a collision detector. The MC-LSTM collision detection f1 score with the optimal threshold was 0.85. A well-developed virtual sensor based on such a network can be used to detect various types of collisions of cobot or other mobile or stationary systems operating on the basis of human-machine interaction.

2018 ◽  
Author(s):  
Muktabh Mayank Srivastava

We propose a simple neural network model which can learn relation between sentences by passing their representations obtained from Long Short Term Memory(LSTM) through a Relation Network. The Relation Network module tries to extract similarity between multiple contextual representations obtained from LSTM. Our model is simple to implement, light in terms of parameters and works across multiple supervised sentence comparison tasks. We show good results for the model on two sentence comparison datasets.


2021 ◽  
Vol 10 (4) ◽  
pp. 0-0

Multilingual Sentiment analysis plays an important role in a country like India with many languages as the style of expression varies in different languages. The Indian people speak in total 22 different languages and with the help of Google Indic keyboard people can express their sentiments i.e reviews about anything in the social media in their native language from individual smart phones. It has been found that machine learning approach has overcome the limitations of other approaches. In this paper, a detailed study has been carried out based on Natural Language Processing (NLP) using Simple Neural Network (SNN) ,Convolutional Neural Network(CNN), and Long Short Term Memory (LSTM)Neural Network followed by another amalgamated model adding a CNN layer on top of the LSTM without worrying about versatility of multilingualism. Around 4000 samples of reviews in English, Hindi and in Bengali languages are considered to generate outputs for the above models and analyzed. The experimental results on these realistic reviews are found to be effective for further research work.


2021 ◽  
Vol 10 (4) ◽  
pp. 1-12
Author(s):  
Abhijit Bera ◽  
Mrinal Kanti Ghose ◽  
Dibyendu Kumar Pal

Multilingual Sentiment analysis plays an important role in a country like India with many languages as the style of expression varies in different languages. The Indian people speak in total 22 different languages and with the help of Google Indic keyboard people can express their sentiments i.e reviews about anything in the social media in their native language from individual smart phones. It has been found that machine learning approach has overcome the limitations of other approaches. In this paper, a detailed study has been carried out based on Natural Language Processing (NLP) using Simple Neural Network (SNN) ,Convolutional Neural Network(CNN), and Long Short Term Memory (LSTM)Neural Network followed by another amalgamated model adding a CNN layer on top of the LSTM without worrying about versatility of multilingualism. Around 4000 samples of reviews in English, Hindi and in Bengali languages are considered to generate outputs for the above models and analyzed. The experimental results on these realistic reviews are found to be effective for further research work.


2018 ◽  
Author(s):  
Muktabh Mayank Srivastava

We propose a simple neural network model which can learn relation between sentences by passing their representations obtained from Long Short Term Memory(LSTM) through a Relation Network. The Relation Network module tries to extract similarity between multiple contextual representations obtained from LSTM. Our model is simple to implement, light in terms of parameters and works across multiple supervised sentence comparison tasks. We show good results for the model on two sentence comparison datasets.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6674
Author(s):  
Wookyong Kwon ◽  
Yongsik Jin ◽  
Sang Jun Lee

Human-robot interaction has received a lot of attention as collaborative robots became widely utilized in many industrial fields. Among techniques for human-robot interaction, collision identification is an indispensable element in collaborative robots to prevent fatal accidents. This paper proposes a deep learning method for identifying external collisions in 6-DoF articulated robots. The proposed method expands the idea of CollisionNet, which was previously proposed for collision detection, to identify the locations of external forces. The key contribution of this paper is uncertainty-aware knowledge distillation for improving the accuracy of a deep neural network. Sample-level uncertainties are estimated from a teacher network, and larger penalties are imposed for uncertain samples during the training of a student network. Experiments demonstrate that the proposed method is effective for improving the performance of collision identification.


2020 ◽  
Vol 13 (4) ◽  
pp. 627-640 ◽  
Author(s):  
Avinash Chandra Pandey ◽  
Dharmveer Singh Rajpoot

Background: Sentiment analysis is a contextual mining of text which determines viewpoint of users with respect to some sentimental topics commonly present at social networking websites. Twitter is one of the social sites where people express their opinion about any topic in the form of tweets. These tweets can be examined using various sentiment classification methods to find the opinion of users. Traditional sentiment analysis methods use manually extracted features for opinion classification. The manual feature extraction process is a complicated task since it requires predefined sentiment lexicons. On the other hand, deep learning methods automatically extract relevant features from data hence; they provide better performance and richer representation competency than the traditional methods. Objective: The main aim of this paper is to enhance the sentiment classification accuracy and to reduce the computational cost. Method: To achieve the objective, a hybrid deep learning model, based on convolution neural network and bi-directional long-short term memory neural network has been introduced. Results: The proposed sentiment classification method achieves the highest accuracy for the most of the datasets. Further, from the statistical analysis efficacy of the proposed method has been validated. Conclusion: Sentiment classification accuracy can be improved by creating veracious hybrid models. Moreover, performance can also be enhanced by tuning the hyper parameters of deep leaning models.


2020 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
Dana-Mihaela Petroșanu ◽  
Alexandru Pîrjan

The accurate forecasting of the hourly month-ahead electricity consumption represents a very important aspect for non-household electricity consumers and system operators, and at the same time represents a key factor in what regards energy efficiency and achieving sustainable economic, business, and management operations. In this context, we have devised, developed, and validated within the paper an hourly month ahead electricity consumption forecasting method. This method is based on a bidirectional long-short-term memory (BiLSTM) artificial neural network (ANN) enhanced with a multiple simultaneously decreasing delays approach coupled with function fitting neural networks (FITNETs). The developed method targets the hourly month-ahead total electricity consumption at the level of a commercial center-type consumer and for the hourly month ahead consumption of its refrigerator storage room. The developed approach offers excellent forecasting results, highlighted by the validation stage’s results along with the registered performance metrics, namely 0.0495 for the root mean square error (RMSE) performance metric for the total hourly month-ahead electricity consumption and 0.0284 for the refrigerator storage room. We aimed for and managed to attain an hourly month-ahead consumed electricity prediction without experiencing a significant drop in the forecasting accuracy that usually tends to occur after the first two weeks, therefore achieving a reliable method that satisfies the contractor’s needs, being able to enhance his/her activity from the economic, business, and management perspectives. Even if the devised, developed, and validated forecasting solution for the hourly consumption targets a commercial center-type consumer, based on its accuracy, this solution can also represent a useful tool for other non-household electricity consumers due to its generalization capability.


2021 ◽  
Vol 11 (4) ◽  
pp. 1829
Author(s):  
Davide Grande ◽  
Catherine A. Harris ◽  
Giles Thomas ◽  
Enrico Anderlini

Recurrent Neural Networks (RNNs) are increasingly being used for model identification, forecasting and control. When identifying physical models with unknown mathematical knowledge of the system, Nonlinear AutoRegressive models with eXogenous inputs (NARX) or Nonlinear AutoRegressive Moving-Average models with eXogenous inputs (NARMAX) methods are typically used. In the context of data-driven control, machine learning algorithms are proven to have comparable performances to advanced control techniques, but lack the properties of the traditional stability theory. This paper illustrates a method to prove a posteriori the stability of a generic neural network, showing its application to the state-of-the-art RNN architecture. The presented method relies on identifying the poles associated with the network designed starting from the input/output data. Providing a framework to guarantee the stability of any neural network architecture combined with the generalisability properties and applicability to different fields can significantly broaden their use in dynamic systems modelling and control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Karun Thanjavur ◽  
Arif Babul ◽  
Brandon Foran ◽  
Maya Bielecki ◽  
Adam Gilchrist ◽  
...  

AbstractConcussion is a global health concern. Despite its high prevalence, a sound understanding of the mechanisms underlying this type of diffuse brain injury remains elusive. It is, however, well established that concussions cause significant functional deficits; that children and youths are disproportionately affected and have longer recovery time than adults; and that individuals suffering from a concussion are more prone to experience additional concussions, with each successive injury increasing the risk of long term neurological and mental health complications. Currently, the most significant challenge in concussion management is the lack of objective, clinically- accepted, brain-based approaches for determining whether an athlete has suffered a concussion. Here, we report on our efforts to address this challenge. Specifically, we introduce a deep learning long short-term memory (LSTM)-based recurrent neural network that is able to distinguish between non-concussed and acute post-concussed adolescent athletes using only short (i.e. 90 s long) samples of resting state EEG data as input. The athletes were neither required to perform a specific task nor expected to respond to a stimulus during data collection. The acquired EEG data were neither filtered, cleaned of artefacts, nor subjected to explicit feature extraction. The LSTM network was trained and validated using data from 27 male, adolescent athletes with sports related concussion, benchmarked against 35 non-concussed adolescent athletes. During rigorous testing, the classifier consistently identified concussions with an accuracy of > 90% and achieved an ensemble median Area Under the Receiver Operating Characteristic Curve (ROC/AUC) equal to 0.971. This is the first instance of a high-performing classifier that relies only on easy-to-acquire resting state, raw EEG data. Our concussion classifier represents a promising first step towards the development of an easy-to-use, objective, brain-based, automatic classification of concussion at an individual level.


Sign in / Sign up

Export Citation Format

Share Document