scholarly journals Heat Transfer Behavior of Green Roof Systems Under Fire Condition: A Numerical Study

Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 206
Author(s):  
Gerzhova ◽  
Blanchet ◽  
Dagenais ◽  
Côté ◽  
Ménard

Currently, green roof fire risks are not clearly defined. This is because the problem is still not well understood, which raises concerns. The possibility of plants catching fire, especially during drought periods, is one of the reasons for necessary protection measures. The potential fire hazard for roof decks covered with vegetation has not yet been fully explored. The present study analyzes the performance of green roofs in extreme heat conditions by simulating a heat transfer process through the assembly. The main objective of this study was to determine the conditions and time required for the roof deck to reach a critical temperature. The effects of growing medium layer thickness (between 3 and 10 cm), porosity (0.5 to 0.7), and heating intensity (50, 100, 150, and 200 kW/m²) were examined. It was found that a green roof can protect a wooden roof deck from igniting with only 3 cm of soil coverage when exposed to severe heat fluxes for at least 25 minutes. The dependency of failure time on substrate thickness decreases with increasing heating load. It was also found that substrate porosity has a low impact on time to failure, and only at high heating loads.

Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4459
Author(s):  
José R. González ◽  
Charbel Damião ◽  
Maira Moran ◽  
Cristina A. Pantaleão ◽  
Rubens A. Cruz ◽  
...  

According to experts and medical literature, healthy thyroids and thyroids containing benign nodules tend to be less inflamed and less active than those with malignant nodules. It seems to be a consensus that malignant nodules have more blood veins and more blood circulation. This may be related to the maintenance of the nodule’s heat at a higher level compared with neighboring tissues. If the internal heat modifies the skin radiation, then it could be detected by infrared sensors. The goal of this work is the investigation of the factors that allow this detection, and the possible relation with any pattern referent to nodule malignancy. We aim to consider a wide range of factors, so a great number of numerical simulations of the heat transfer in the region under analysis, based on the Finite Element method, are performed to study the influence of each nodule and patient characteristics on the infrared sensor acquisition. To do so, the protocol for infrared thyroid examination used in our university’s hospital is simulated in the numerical study. This protocol presents two phases. In the first one, the body under observation is in steady state. In the second one, it is submitted to thermal stress (transient state). Both are simulated in order to verify if it is possible (by infrared sensors) to identify different behavior referent to malignant nodules. Moreover, when the simulation indicates possible important aspects, patients with and without similar characteristics are examined to confirm such influences. The results show that the tissues between skin and thyroid, as well as the nodule size, have an influence on superficial temperatures. Other thermal parameters of thyroid nodules show little influence on surface infrared emissions, for instance, those related to the vascularization of the nodule. All details of the physical parameters used in the simulations, characteristics of the real nodules and thermal examinations are publicly available, allowing these simulations to be compared with other types of heat transfer solutions and infrared examination protocols. Among the main contributions of this work, we highlight the simulation of the possible range of parameters, and definition of the simulation approach for mapping the used infrared protocol, promoting the investigation of a possible relation between the heat transfer process and the data obtained by infrared acquisitions.


2011 ◽  
Vol 228-229 ◽  
pp. 676-680 ◽  
Author(s):  
Ye Tian ◽  
Xun Liang Liu ◽  
Zhi Wen

A three-dimensional mathematic model is developed for a 100kw single-end recuperative radiant tube and the simulation is performed with the CFD software FLUENT. Also it is used to investigate the effect of distance between combustion chamber exit and inner tube on heat transfer process. The results suggest that the peak value of combustion flame temperature drops along with the increasing of distance, which leads to low NOX discharging. Also radiant tube surface bulk temperature decreases, which causes radiant tube heating performance losses.


2020 ◽  
Vol 175 ◽  
pp. 11023
Author(s):  
Elena Sysoeva ◽  
Margarita Gelmanova

Over the past 20 years, a large number of studies have been published on reducing storm runoff by various types of green roofs. This article analyzes the results of experimental studies presented in 39 publications on green roof runoff reduction in a climate similar to the climate of Russia: in Canada, the USA, Finland, Norway, France. An analytical review found that the ability of green roofs to retain rainfall varies from 20 to 99.5% depending on climatic conditions (duration and intensity of rains, duration of dry periods, solar radiation, temperature and humidity, wind conditions), the properties of green roof layers (moisture capacity of the substrate and a drainage layer, the substrate thickness), the type of vegetation, the geometry of a green roof (slope and orientation). Green roofs can be a useful tool for reducing urban storm water runoff. However, in order to ensure high efficiency, it is necessary to use green roof technology with other measures to reduce runoff.


2015 ◽  
Vol 55 (4) ◽  
pp. 267 ◽  
Author(s):  
Jan Skočilas ◽  
Ievgen Palaziuk

<p>This paper deals with a computational fluid dynamics (CFD) simulation of the heat transfer process during turbulent hot water flow between two chevron plates in a plate heat exchanger. A three-dimensional model with the simplified geometry of two cross-corrugated channels provided by chevron plates, taking into account the inlet and outlet ports, has been designed for the numerical study. The numerical model was based on the shear-stress transport (SST) <em>k-!</em> model. The basic characteristics of the heat exchanger, as values of heat transfer coefficient and pressure drop, have been investigated. A comparative analysis of analytical calculation results, based on experimental data obtained from literature, and of the results obtained by numerical simulation, has been carried out. The coefficients and the exponents in the design equations for the considered plates have been arranged by using simulation results. The influence on the main flow parameters of the corrugation inclination angle relative to the flow direction has been taken into account. An analysis of the temperature distribution across the plates has been carried out, and it has shown the presence of zones with higher heat losses and low fluid flow intensity.</p>


2005 ◽  
Vol 127 (3) ◽  
pp. 324-332 ◽  
Author(s):  
Yan Su ◽  
Jane H. Davidson

A three-dimensional model and dimensionless scale analysis of the transient fluid dynamics and heat transfer in an inclined adiabatic water-filled enclosure with an immersed cylindrical cold sink is presented. The geometry represents an integral collector storage system with an immersed heat exchanger. The modeled enclosure has an aspect ratio of 6:1 and is inclined at 30deg to the horizontal. The heat exchanger is represented by a constant surface temperature horizontal cylinder positioned near the top of the enclosure. A scale analysis of the transient heat transfer process identifies four temporal periods: conduction, quasi-steady, fluctuating, and decay. It also provides general formulations for the transient Nusselt number, and volume-averaged water temperature in the enclosure. Insight to the transient fluid and thermal processes is provided by presentation of instantaneous flow streamlines and isotherm contours during each transient period. The flow field consists of two distinct zones. The zone above the cold sink is nearly stagnant. The larger zone below the sink is one of strong mixing and recirculation initiated by the cold plume formed in the boundary layer of the cylindrical sink. Correlations for the transient Nusselt number and the dimensionless volume-averaged tank temperature predicted from the model compare favorably to prior measured data. Fluid motion in the enclosure enhances heat transfer compared to that of a cylinder in an unbounded fluid.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 414 ◽  
Author(s):  
Shicheng Wang ◽  
Chenyi Xu ◽  
Wei Liu ◽  
Zhichun Liu

Packed beds are widely used in industries and it is of great significance to enhance the heat transfer between gas and solid states inside the bed. In this paper, numerical simulation method is adopted to investigate the heat transfer principle in the bed at particle scale, and to develop the direct enhanced heat transfer methods in packed beds. The gas is treated as continuous phase and solved by Computational Fluid Dynamics (CFD), while the particles are treated as discrete phase and solved by the Discrete Element Method (DEM); taking entransy dissipation to evaluate the heat transfer process. Considering the overall performance and entransy dissipation, the results show that, compared with the uniform particle size distribution, radial distribution of multiparticle size can effectively improve the heat transfer performance because it optimizes the velocity and temperature field, reduces the equivalent thermal resistance of convection heat transfer process, and the temperature of outlet gas increases significantly, which indicates the heat quality of the gas has been greatly improved. The increase in distribution thickness obviously enhances heat transfer performance without reducing the equivalent thermal resistance in the bed. The result is of great importance for guiding practical engineering applications.


Author(s):  
Leping Zhou ◽  
Yunfang Zhang ◽  
Lijun Yang ◽  
Xiaoze Du ◽  
Minami Yoda ◽  
...  

The study of the natural convection over a very small heat sources is important in the analysis of heat transfer problems in the electronics industry. However, the characteristics of the spatial distribution of the velocity in the near wall region, which is crucial to the mechanisms of heat transfer process in natural convection around a microscale object, is not well understood. In this investigation, the microscale natural convection in the near wall region of a platinum micro heat source was investigated numerically, using FLUENT, a commercially available computational fluid dynamics (CFD) software, and compared with corresponding experimental results. The influence of the nanoparticles on the natural convection was observed using the single-phase or two-phase models available in FLUENT. The temperature and velocity fields were obtained, with which the Brownian diffusion coefficient was deduced. The results indicate that the temperature gradient induced Brownian diffusion and thermophoresis in the near wall region plays an important role in the microscale natural convection in the water/nanoparticle mixture investigated and are in good agreement with the results from a corresponding experimental investigation.


Sign in / Sign up

Export Citation Format

Share Document