scholarly journals An LC Wireless Passive Pressure Sensor Based on Single-Crystal MgO MEMS Processing Technique for High Temperature Applications

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6602
Author(s):  
Pinggang Jia ◽  
Jia Liu ◽  
Jiang Qian ◽  
Qianyu Ren ◽  
Guowen An ◽  
...  

An LC wireless passive pressure sensor based on a single-crystalline magnesium oxide (MgO) MEMS processing technique is proposed and experimentally demonstrated for applications in environmental conditions of 900 °C. Compared to other high-temperature resistant materials, MgO was selected as the sensor substrate material for the first time in the field of wireless passive sensing because of its ultra-high melting point (2800 °C) and excellent mechanical properties at elevated temperatures. The sensor mainly consists of inductance coils and an embedded sealed cavity. The cavity length decreases with the applied pressure, leading to a monotonic variation in the resonant frequency of the sensor, which can be retrieved wirelessly via a readout antenna. The capacitor cavity was fabricated using a MgO MEMS technique. This MEMS processing technique, including the wet chemical etching and direct bonding process, can improve the operating temperature of the sensor. The experimental results indicate that the proposed sensor can stably operate at an ambient environment of 22–900 °C and 0–700 kPa, and the pressure sensitivity of this sensor at room temperature is 14.52 kHz/kPa. In addition, the sensor with a simple fabrication process shows high potential for practical engineering applications in harsh environments.

2021 ◽  
Author(s):  
Muhabaw Amare Alebachew ◽  
Anil Kumar Nayak ◽  
Amalendu Patnaik

Abstract this paper is studied on a microstrip based pressure sensor for harsh environment applications which can sensing at a distance. A microstrip based pressure sensor for harsh environment was investigated with good results by using Rogers’s 3210 substrate material with a dielectric constant of 10.2, 1.28mm thickness and 2.4 GHz resonant frequency, and also both the patch side and the ground side are made from copper metal. The simulation of a proposed antenna was designed and tested by using HFSS software, the result of the designed antenna’s resonance frequency is inversely proportional with the displacement gap of the reflection plate and an antenna. The operating principles of this sensor, when a pressure (load) is applied on the reflection metal plate, the distance will decrease from the reflection plate and the resonant frequency will increase. Therefore, the applied pressure (load) can determined by measuring the changing resonance frequencies. Certainly, the simulation and the experimental results of performances and validates are clearly discussed.


2000 ◽  
Vol 5 (S1) ◽  
pp. 343-348
Author(s):  
I. Yonenaga ◽  
T. Hoshi ◽  
A. Usui

The hardness of single crystal GaN (gallium nitride) at elevated temperature is measured for the first time and compared with other materials. A Vickers indentation method was used to determine the hardness of crack-free GaN samples under an applied load of 0.5N in the temperature range 20 - 1200°C. The hardness is 10.8 GPa at room temperature, which is comparable to that of Si. At elevated temperatures GaN shows higher hardness than Si and GaAs. A high mechanical stability for GaN at high temperature is deduced.


Micromachines ◽  
2014 ◽  
Vol 5 (4) ◽  
pp. 814-824 ◽  
Author(s):  
Tao Luo ◽  
Qiulin Tan ◽  
Liqiong Ding ◽  
Tanyong Wei ◽  
Chao Li ◽  
...  

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Fei Lu ◽  
Yanjie Guo ◽  
Qiulin Tan ◽  
Tanyong Wei ◽  
Guozhu Wu ◽  
...  

A novel reentrant cavity-microstrip patch antenna integrated wireless passive pressure sensor was proposed in this paper for high temperature applications. The reentrant cavity was analyzed from aspects of distributed model and equivalent lumped circuit model, on the basis of which an optimal sensor structure integrated with a rectangular microstrip patch antenna was proposed to better transmit/receive wireless signals. In this paper, the proposed sensor was fabricated with high temperature resistant alumina ceramic and silver metalization with weld sealing, and it was measured in a hermetic metal tank with nitrogen pressure loading. It was verified that the sensor was highly sensitive, keeping stable performance up to 300 kPa with an average sensitivity of 981.8 kHz/kPa at temperature 25°C, while, for high temperature measurement, the sensor can operate properly under pressure of 60–120 kPa in the temperature range of 25–300°C with maximum pressure sensitivity of 179.2 kHz/kPa. In practical application, the proposed sensor is used in a method called table lookup with a maximum error of 5.78%.


Sensors ◽  
2015 ◽  
Vol 15 (2) ◽  
pp. 2548-2564 ◽  
Author(s):  
Huixin Zhang ◽  
Yingping Hong ◽  
Ting Liang ◽  
Hairui Zhang ◽  
Qiulin Tan ◽  
...  

Sensor Review ◽  
2018 ◽  
Vol 38 (2) ◽  
pp. 156-162 ◽  
Author(s):  
YanJie Guo ◽  
QiuLin Tan ◽  
Fei Lu ◽  
GuoZhu Wu ◽  
Lei Zhang

Purpose This paper aims to present a novel wireless passive pressure sensor based on an aperture coupled microstrip patch antenna embedded with an air cavity for pressure measurement. Design/methodology/approach In this paper, the sensitive membrane deformed when pressure was applied on the surface of the sensor and the relative permittivity of the mixed substrate changed, resulting in a change in the center frequency of the microstrip antenna. The size of the pressure sensor is determined by theoretical calculation and software simulation. Then, the sensor is fabricated separately as three layers using printed circuit board technology and glued together at last. The pressure test of the sensor is carried out in a sealed metal tank. Findings The extracted resonant frequency was found to monotonically shift from 2.219 to 1.974 GHz when the pressure varied from 0 to 300 kPa, leading to an average absolute sensitivity of 0.817 MHz/kPa. Research limitations/implications This pressure sensor proposed here is mainly to verify the feasibility of this wireless passive maneuvering structure, and when the base material of this structure is replaced with some high-temperature-resistant material, the sensor can be used to measure the pressure inside the aircraft engine. Originality/value The sensor structure proposed here can be used to test the pressure in a high-temperature environment when the base material is replaced with some high-temperature-resistant material.


2015 ◽  
Vol 22 (3) ◽  
pp. 331-340 ◽  
Author(s):  
Darko Belavič ◽  
Andraž Bradeško ◽  
Marina Santo Zarnik ◽  
Tadej Rojac

Abstract In this work the design aspects of a piezoelectric-based resonance ceramic pressure sensor made using low-temperature co-fired ceramic (LTCC) technology and designed for high-temperature applications is presented. The basic pressure-sensor structure consists of a circular, edge-clamped, deformable diaphragm that is bonded to a ring, which is part of the rigid ceramic structure. The resonance pressure sensor has an additional element – a piezoelectric actuator – for stimulating oscillation of the diaphragm in the resonance-frequency mode. The natural resonance frequency is dependent on the diaphragm construction (i.e., its materials and geometry) and on the actuator. This resonance frequency then changes due to the static deflection of the diaphragm caused by the applied pressure. The frequency shift is used as the output signal of the piezoelectric resonance pressure sensor and makes it possible to measure the static pressure. The characteristics of the pressure sensor also depend on the temperature, i.e., the temperature affects both the ceramic structure (its material and geometry) and the properties of the actuator. This work is focused on the ceramic structure, while the actuator will be investigated later.


1999 ◽  
Vol 595 ◽  
Author(s):  
I. Yonenaga ◽  
T. Hoshi ◽  
A. Usui

AbstractThe hardness of single crystal GaN (gallium nitride) at elevated temperature is measured for the first time and compared with other materials. A Vickers indentation method was used to determine the hardness of crack-free GaN samples under an applied load of 0.5N in the temperature range 20 - 1200°C. The hardness is 10.8 GPa at room temperature, which is comparable to that of Si. At elevated temperatures GaN shows higher hardness than Si and GaAs. A high mechanical stability for GaN at high temperature is deduced.


2007 ◽  
Vol 556-557 ◽  
pp. 771-774 ◽  
Author(s):  
Qing Chun Jon Zhang ◽  
Charlotte Jonas ◽  
Bradley Heath ◽  
Mrinal K. Das ◽  
Sei Hyung Ryu ◽  
...  

SiC IGBTs are suitable for high power, high temperature applications. For the first time, the design and fabrication of 9 kV planar p-IGBTs on 4H-SiC are reported in this paper. A differential on-resistance of ~ 88 m(cm2 at a gate bias of –20 V is achieved at 25°C, and decreases to ~24.8 m(cm2 at 200°C. The device exhibits a blocking voltage of 9 kV with a leakage current density of 0.1 mA/cm2. The hole channel mobility is 6.5 cm2/V-s at room temperature with a threshold voltage of –6.5 V resulting in enhanced conduction capability. Inductive switching tests have shown that IGBTs feature fast switching capability at both room and elevated temperatures.


Sign in / Sign up

Export Citation Format

Share Document