scholarly journals A Fast Storage Method for Drone-Borne Passive Microwave Radiation Measurement

Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6767
Author(s):  
Xiangkun Wan ◽  
Xiaofeng Li ◽  
Tao Jiang ◽  
Xingming Zheng ◽  
Xiaojie Li ◽  
...  

A drone-borne microwave radiometer requires a high sampling frequency and a continuous acquisition capability to detect and mitigate radio frequency interference (RFI), but existing methods cannot store such a large amount of data. In this paper, the dual polling write method (DPSM) for secure digital cards triggered by a timer under a multitask framework based on STM32 MCU is proposed to meet the requirements of continuous data storage. The card programming step was changed from a query waiting structure to a polling query flag bit structure, and time-sharing processing and parallel processing were used to simulate multithreading. The experimental results were as follows: (1) the time consumption of the whole storage procedure was reduced from 4000 microseconds to 200–400 microseconds; (2) the time consumption of the card programming step was reduced from 3000 microseconds in the first block and 1000 microseconds in the second and subsequent blocks to 17–174 microseconds and 18–71 microseconds, respectively, compared with the existing method; (3) the delay in the whole sampling cycle was reduced from 3942 microseconds to 0 microseconds. The results of this paper can meet the data storage requirements of a drone-borne microwave radiometer and be applied to the high-speed storage of other devices.

Author(s):  
Lin Zhong ◽  
ShengPeng Wan ◽  
BaoJi Li ◽  
WenGang Hu ◽  
Wei Yu ◽  
...  

2015 ◽  
Vol 1092-1093 ◽  
pp. 366-369
Author(s):  
Shu Min Sun ◽  
Wen Juan Jiang ◽  
Yu Meng ◽  
Yan Cheng

A set of measurement system for the testing of transmission lines, composing of wireless center station, wireless current acquisition and transmission nodes, wireless voltage acquisition and transmission node, was designed, which was based on wireless communication. The high speed wireless bridge working at 2.4GHz together with the clock synchronization module based on the IEEE1588 communicating protocol were both employed for the communication and time synchronization separately. The measurement system has data storage, waveform display, data analysis, automatic report generation and other functions. The measurement system can greatly reduced arrangement of cables, thereafter improved the test efficiency.


Author(s):  
Ivan Mozghovyi ◽  
Anatoliy Sergiyenko ◽  
Roman Yershov

Increasing requirements for data transfer and storage is one of the crucial questions now. There are several ways of high-speed data transmission, but they meet limited requirements applied to their narrowly focused specific target. The data compression approach gives the solution to the problems of high-speed transfer and low-volume data storage. This paper is devoted to the compression of GIF images, using a modified LZW algorithm with a tree-based dictionary. It has led to a decrease in lookup time and an increase in the speed of data compression, and in turn, allows developing the method of constructing a hardware compression accelerator during the future research.


Author(s):  
Saswati Sarkar ◽  
Anirban Kundu ◽  
Ayan Banerjee

Cloud-based reliable and protected data storage technique is proposed in this chapter. The proposed technique encrypts and protects data with less time consumption. Power consumption of storage is dependent upon capacity of storage and physical size of storage. Time analysis is presented graphically in this chapter. Reliable data storage is represented in cloud based proposed approach. Data is encrypted with minimum time complexity due to usage of proposed cloud-based reliable data storage. The competent ratio of time complexity is graphically observed in proposed data storage technique. Power consumption of storage has been typically dependent on the basis of capacity of storage and amount of storage. A ratio of power consumption and capacity of storage is presented in cloud-based approach. An efficient usage of energy is shown depending on current consumption and voltage in proposed reliable approach.


Author(s):  
D. Chakraborty ◽  
G. Chakraborty ◽  
N. Shiratori

The advancement in optical fiber and switching technologies has resulted in a new generation of high-speed networks that can achieve speeds of up to a few gigabits per second. Also, the progress in audio, video and data storage technologies has given rise to new distributed real-time applications. These applications may involve multimedia, which require low end-to-end delay. The applications’ requirements, such as the end-to-end delay, delay jitter, and loss rate, are expressed as QoS parameters, which must be guaranteed. In addition, many of these new applications involve multiple users, and hence the importance of multicast communication. Multimedia applications are becoming increasingly important, as networks are now capable of carrying continuous media traffic, such as voice and video, to the end user. When there is a lot of information to transmit to a subset of hosts, then multicast is the best possible way to facilitate it. This article addresses different multicast routing algorithms and protocols. We have also discussed about the QoS multicast routing and conclude this article with mobile multicasting.


1971 ◽  
Vol 15 ◽  
pp. 70-89
Author(s):  
Melvin H. Mueller

The use of on-line computers for control and acquisition of data from x-ray and neutron diffractometers has continuously improved and expanded. Systems vary from a small 4K core computer to a time-sharing system with a medium or large computer. The choice of a single time-shared computer or an individual standalone system must be based on one's own particular environment. As large high-speed electronic computers became available, increasingly complex chemical and magnetic structures have been analysed and solved; this has created a demand for rapid, reliable, and versatile means of obtaining diffraction data. Since small computers have been developed at reduced cost and with increased storage capacity, they must be considered for use in diffraction experimentation. Therefore, in x-ray and neutron scattering, small computers are needed for data acquisition and large computers are needed for data analysis.


Author(s):  
Seyed Ehsan Yasrebi Naeini ◽  
Ali Maroosi

A Sampling rate is less than Nyquist rate in some applications because of hardware limitations. Consequently, extensive researches have been conducted on frequency detection from sub-sampled signals. Previous studies on under-sampling frequency measurements have mostly discussed under-sampling frequency detection in theory and suggested possible methods for fast under-sampling frequencies detection. This study examined few suggested methods on Field Programmable Gate Array (FPGA) for fast under-sampling frequencies measurement. Implementation of the suggested methods on FPGA has issues that make them improper for fast data processing. This study tastes and discusses different methods for frequency detection including Least Squares (LS), Direct State Space (DSS), Goertzel filter, Sliding DFT, Phase changes of Fast Furrier Transform (FFT), peak amplitude of FFT to conclude which one from these methods are suitable for fast under-sampling frequencies detection on FPGA. Moreover, our proposed approach for sub-sampling detection from real waveform has less complextity than previous approaches from complex waveform.


Author(s):  
Namcheol Kang ◽  
Arvind Raman

The aeroelastic stability of a thin, flexible disk rotating in an enclosed compressible fluid is investigated analytically through a discretization of the field equations of a rotating Kirchhoff plate coupled to the acoustic oscillations of the surrounding fluid. The discretization procedure exploits Green’s theorem and exposes two different gyroscopic effects underpinning the coupled system dynamics: one describes the gyroscopic coupling between the disk and acoustic oscillations, and another arises from the disk rotation. The discretized dynamical system is cast in the compact form of a classical gyroscopic system and acoustic and disk mode coupling rules are derived. Effects of eigenvalue veering of structure and acoustic dominated modes are investigated in detail. For the undamped system, coupled structure-acoustic traveling waves can destabilize through mode coalescence leading to flutter instability. Regions in parameter space are identified where structure-acoustic traveling waves of specific wave numbers destabilize. The results are expected to be relevant for the design of high speed, low vibration, low noise hard disk drives and optical data storage systems.


Sign in / Sign up

Export Citation Format

Share Document