scholarly journals Thermographic Fault Diagnosis of Ventilation in BLDC Motors

Sensors ◽  
2021 ◽  
Vol 21 (21) ◽  
pp. 7245
Author(s):  
Adam Glowacz

Thermographic fault diagnosis of ventilation in BLDC (brushless DC) motors is described. The following states of BLDC motors were analyzed: a healthy BLDC motor running at 1450 rpm, a healthy BLDC motor at 2100 rpm, blocked ventilation of the BLDC motor at 1450 rpm, blocked ventilation of the BLDC motor at 2100 rpm, healthy clipper, and blocked ventilation of the clipper. A feature extraction method called the Common Part of Arithmetic Mean of Thermographic Images (CPoAMoTI) was proposed. Test thermal images were analyzed successfully. The developed method, CPoAMoTI is useful for industry and society. Electric cars, trains, fans, clippers, computers, cordless power tools can be diagnosed using the developed method.

2018 ◽  
Vol 51 (24) ◽  
pp. 338-345
Author(s):  
Kawthar Alameh ◽  
Ghaleb Hoblos ◽  
Georges Barakat

2018 ◽  
Vol 19 (6) ◽  
pp. 708-711
Author(s):  
Emil Sadowski ◽  
Artur Pakosz

The article discusses low-power brushless motors and control modules that are used, among others, in trucks and buses. Also presented are methods of controlling brushless DC motors. The own low power controller was also implemented, enabling smooth start-up and control of the engine speed up to 3,000 revolutions and supply voltage up to 32V DC. This article also presents the results of the measurements of BLDC motor control used in automotive vehicles, mainly in trucks and buses.


2021 ◽  
Vol 1 (1) ◽  
pp. 55-60
Author(s):  
Vladimir M. GRIDIN ◽  

Two brushless DC motors (BLDC) with a three-section armature windiщ and two cylindrical inductors-magnets are considered. One motor has an ordinary drum-type armature windiщ, and numbers of radial poles in its two inductors differ from each other by a factor of three. The other motor has a toroidal armature winding, and the numbers of radial poles in its two inductors differ from each other by a factor of two. An expression for the distribution of the resulting armature winding magnetic induction over the air gap circumference is given. The optimal relationships between the parameters of two inductors are determined. Expressions are obtained for the ratios of the electromagnetic torques of the considered motors and for the known BLDC motor with a conventional three-section armature winding and a composite inductor consisting of an inner magnetically soft bushing and external poles formed by magnets. The compared machines have the same number of power transistors and are made with the same dimensions of their electromechanical parts, and their armature windings consume the same power from the power source. It has been found that the electromagnetic torque in the considered motor with the ordinary armature winding is approximately a factor of 1.37 greater than in the known motor with a three-section armature winding, whereas in the motor with a toroidal armature winding it is smaller by about a factor of 1.1, i.e., insignificantly. However, the electromagnetic torque pulsation in the motor with a toroidal winding and three power transistors is approximately 3%, whereas in the known motor with three and six power transistors its values are approximately equal to 8 and 4.5%, respectively. The considered motors with simpler cylindrical inductors can compete with the known BLDC motors.


Author(s):  
Joon Sung Park ◽  
Ki-Doek Lee

<span style="font-family: 'Times New Roman',serif; font-size: 9pt; mso-fareast-font-family: '맑은 고딕'; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: EN-US; mso-bidi-language: AR-SA; mso-bidi-font-style: italic;" lang="EN-US">The trend in the motor applications is to reduce weight and volume by increasing the efficiency. Because of the advantage of high efficiency and high density, interest in brushless DC motors and drives is increasing. Unlike DC motors, the brushless DC (BLDC) motors require inverter circuit and position detector. In this paper, we deal with the optimization of the BLDC motor, the inverter, and the position detector. The inverter is optimized to be mounted on the BLDC motor. This paper deals primarily with the design and implementation aspects of the BLDC motor and the integrated drive circuit. Experimental results for the prototype of the BLDC motor with integrated dirve circuit in the laboratory are presented to validate the feasibility.</span>


Author(s):  
Ali Mousmi ◽  
Ahmed Abbou ◽  
Yassine El Houm

<span lang="EN-US">This paper presents a novel hybrid control of a BLDC motor using a mixed sliding mode and fuzzy logic controller. The objective is to build a fast and robust controller which overcome classical controllers’ inconveniences and exploit the fast response of brushless dc motors characterized by an intense torque and fast response time. First the paper study pros and cons of both sliding mode and fuzzy logic controllers. Then the novel controller and its stability demonstration are presented. Finally the proposed controller method is used for the speed control of a BLDC motor 3KW. The obtained results are compared with those of a fuzzy logic and a conventional sliding mode controller. It allows to show performance of the proposed controller in terms of speed response and reaction against disturbances, which is improved more than 5 times without losing stability or altering tracking accuracy</span>


is main goal of upcoming and present applications. However, its possible to achive these aims using brushless DC motors (BLDC), due to its use in many applications. The applications such as sppining, drilling, elevators, lathes, etc can be exicuted using BLDC motor and can replace conventional DC brush motor. The effective vechiel control required for applications of variable speed can be achived using BLDC motors. This paper presents speed control of BLDC motor for open loop using PID and neural network techniques and their comparative study. From the simulation study it is observed that neural network gives better performance compaiered to other technique.


Author(s):  
S. Usha ◽  
Pranjul Mani Dubey ◽  
R. Ramya ◽  
M. V. Suganyadevi

Mainly the DC motors are employed in most of the application. The main objective is to Regulate the DC motor system. A motor which displays the appearances of a DC motor but there is no commutator and brushes is called as brushless DC motor. These motors are widespread to their compensations than other motors in relationships of dependability, sound, efficiency, preliminary torque and longevity. To achieve the operation more reliable and less noisy, brushless dc motors are employed. In the proposed work, dissimilar methods of speed control are analysed. In real time submission of speed control of BLDC motor, numerous strategies are executed for the speed control singularity. The modified approaches are the employment of PI controller, use of PID controller and proposed current controller.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1202-1205
Author(s):  
Fu Cheng Cao ◽  
Ji Xia Shi

This research presents a new adaptive speed controller for the brushless DC motor. Themethodology of model reference adaptive control is applied to a novel model of BLDC motor. Thisnovel model provides the possibility to compensate the torque ripples and load torque.


Sign in / Sign up

Export Citation Format

Share Document