scholarly journals Modelling of SEPIC, Ćuk and Zeta Converters in Discontinuous Conduction Mode and Performance Evaluation

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7434
Author(s):  
Emerson Madrid ◽  
Duberney Murillo-Yarce ◽  
Carlos Restrepo ◽  
Javier Muñoz ◽  
Roberto Giral

High-order switched DC-DC converters, such as SEPIC, Ćuk and Zeta, are classic energy processing elements, which can be used in a wide variety of applications due to their capacity to step-up and/or step-down voltage characteristic. In this paper, a novel methodology for analyzing the previous converters operating in discontinuous conduction mode (DCM) is applied to obtain full-order dynamic models. The analysis is based on the fact that inductor currents have three differentiated operating sub-intervals characterized by a third one in which both currents become equal, which implies that the current flowing through the diode is zero (DCM). Under a small voltage ripple hypothesis, the currents of all three converters have similar current piecewise linear shapes that allow us to use a graphical method based on the triangular shape of the diode current to obtain the respective non-linear average models. The models’ linearization around their steady-state operating points yields full-order small-signal models that reproduce accurately the dynamic behavior of the corresponding switched model. The proposed methodology is applicable to the proposed converters and has also been extended to more complex topologies with magnetic coupling between inductors and/or an RC damping network in parallel with the intermediate capacitor. Several tests were carried out using simulation, hardware-in-the-loop, and using an experimental prototype. All the results validate the theoretical models.

2016 ◽  
Vol 30 (06) ◽  
pp. 1650014 ◽  
Author(s):  
Cheng Tan ◽  
Zhi-Shan Liang

In this paper, based on the fact that the inductors and capacitors are of fractional order in nature, the four-order mathematical model of the fractional order quadratic Boost converter in type I and type II discontinuous conduction mode (DCM) — DCM is established by using fractional calculus theory. Direct current (DC) analysis is conducted by using the DC equivalent model and the transfer functions are derived from the corresponding alternating current (AC) equivalent model. The DCM–DCM regions of type I and type II are obtained and the relations between the regions and the orders are found. The influence of the orders on the performance of the quadratic Boost converter in DCM–DCM is verified by numerical and circuit simulations. Simulation results demonstrate the correctness of the fractional order model and the efficiency of the proposed theoretical analysis.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 705
Author(s):  
Fatemeh Rasouli ◽  
Kyle B. Reed

Dynamic models, such as double pendulums, can generate similar dynamics as human limbs. They are versatile tools for simulating and analyzing the human walking cycle and performance under various conditions. They include multiple links, hinges, and masses that represent physical parameters of a limb or an assistive device. This study develops a mathematical model of dissimilar double pendulums that mimics human walking with unilateral gait impairment and establishes identical dynamics between asymmetric limbs. It introduces new coefficients that create biomechanical equivalence between two sides of an asymmetric gait. The numerical solution demonstrates that dissimilar double pendulums can have symmetric kinematic and kinetic outcomes. Parallel solutions with different physical parameters but similar biomechanical coefficients enable interchangeable designs that could be incorporated into gait rehabilitation treatments or alternative prosthetic and ambulatory assistive devices.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
Sanjiv Ramachandran ◽  
George Lesieutre

Particle impact dampers (PIDs) have been shown to be effective in vibration damping. However, our understanding of such dampers is still limited, based on the theoretical models existing today. Predicting the performance of the PID is an important problem, which needs to be investigated more thoroughly. This research seeks to understand the dynamics of a PID as well as those parameters which govern its behavior. The system investigated is a particle impact damper with a ceiling, under the influence of gravity. The base is harmonically excited in the vertical direction. A two-dimensional discrete map is obtained, wherein the variables at one impact uniquely dictate the variables at the next impact. This map is solved using a numerical continuation procedure. Periodic impact motions and “irregular” motions are observed. The effects of various parameters such as the gap clearance, coefficient of restitution, and the base acceleration are analyzed. The dependence of the effective damping loss factor on these parameters is also studied. The loss factor results indicate peak damping for certain combinations of parameters. These combinations of parameters correspond to a region in parameter space where two-impacts-per-cycle motions are observed over a wide range of nondimensional base accelerations. The value of the nondimensional acceleration at which the onset of two-impacts-per-cycle solutions occurs depends on the nondimensional gap clearance and the coefficient of restitution. The range of nondimensional gap clearances over which two-impacts-per-cycle solutions are observed increases as the coefficient of restitution increases. In the regime of two-impacts-per-cycle solutions, the value of nondimensional base acceleration corresponding to onset of these solutions initially decreases and then increases with increasing nondimensional gap clearance. As the two-impacts-per-cycle solutions are associated with high loss factors that are relatively insensitive to changing conditions, they are of great interest to the designer.


Sign in / Sign up

Export Citation Format

Share Document