scholarly journals Identical Limb Dynamics for Unilateral Impairments through Biomechanical Equivalence

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 705
Author(s):  
Fatemeh Rasouli ◽  
Kyle B. Reed

Dynamic models, such as double pendulums, can generate similar dynamics as human limbs. They are versatile tools for simulating and analyzing the human walking cycle and performance under various conditions. They include multiple links, hinges, and masses that represent physical parameters of a limb or an assistive device. This study develops a mathematical model of dissimilar double pendulums that mimics human walking with unilateral gait impairment and establishes identical dynamics between asymmetric limbs. It introduces new coefficients that create biomechanical equivalence between two sides of an asymmetric gait. The numerical solution demonstrates that dissimilar double pendulums can have symmetric kinematic and kinetic outcomes. Parallel solutions with different physical parameters but similar biomechanical coefficients enable interchangeable designs that could be incorporated into gait rehabilitation treatments or alternative prosthetic and ambulatory assistive devices.

Author(s):  
Akbar Hojjati Najafabadi ◽  
Saeid Amini ◽  
Farzam Farahmand

The majority of the people with incomplete spinal cord injury lose their walking ability, due to the weakness of their muscle motors in providing torque. As a result, developing assistive devices to improve their conditionis of great importance. In this study, a combined application of the saddle-assistive device (S-AD) and mechanical medial linkage or thosis was evaluated to improve the walking ability in patients with spinal cord injury in the gait laboratory. This mobile assistive device is called the saddle-assistive device equipped with medial linkage or thosis (S-ADEM). In this device, a mechanical orthosis was used in a wheeled walker as previously done in the literature. Initially, for evaluation of the proposed assistive device, the experimental results related to the forces and torques exerted on the feet and upper limbs of a person with the incomplete Spinal Cord Injury (SCI) during walking usingthe standard walker were compared with an those obtained from using the S-ADEM on an able-bodied subject. It was found that using this combination of assistive devices decreases the vertical force and torque on the foot at the time of walking by 53% and 48%, respectively compared to a standard walker. Moreover, the hand-reaction force on the upper limb was negligible instanding and walking positions usingthe introduced device. The findings of this study revealed that the walking ability of the patients with incomplete SCI was improved using the proposed device, which is due to the bodyweight support and the motion technology used in it.


Sensors ◽  
2021 ◽  
Vol 21 (13) ◽  
pp. 4515
Author(s):  
Rinku Roy ◽  
Manjunatha Mahadevappa ◽  
Kianoush Nazarpour

Humans typically fixate on objects before moving their arm to grasp the object. Patients with ALS disorder can also select the object with their intact eye movement, but are unable to move their limb due to the loss of voluntary muscle control. Though several research works have already achieved success in generating the correct grasp type from their brain measurement, we are still searching for fine controll over an object with a grasp assistive device (orthosis/exoskeleton/robotic arm). Object orientation and object width are two important parameters for controlling the wrist angle and the grasp aperture of the assistive device to replicate a human-like stable grasp. Vision systems are already evolved to measure the geometrical attributes of the object to control the grasp with a prosthetic hand. However, most of the existing vision systems are integrated with electromyography and require some amount of voluntary muscle movement to control the vision system. Due to that reason, those systems are not beneficial for the users with brain-controlled assistive devices. Here, we implemented a vision system which can be controlled through the human gaze. We measured the vertical and horizontal electrooculogram signals and controlled the pan and tilt of a cap-mounted webcam to keep the object of interest in focus and at the centre of the picture. A simple ‘signature’ extraction procedure was also utilized to reduce the algorithmic complexity and system storage capacity. The developed device has been tested with ten healthy participants. We approximated the object orientation and the size of the object and determined an appropriate wrist orientation angle and the grasp aperture size within 22 ms. The combined accuracy exceeded 75%. The integration of the proposed system with the brain-controlled grasp assistive device and increasing the number of grasps can offer more natural manoeuvring in grasp for ALS patients.


2009 ◽  
Vol 14 (1) ◽  
pp. 40-44
Author(s):  
Xiu-ping Su ◽  
Jiang-ping Chen ◽  
Zhi-jiu Chen ◽  
Xiao-tian Zhou

Author(s):  
Huaiqiang Zhang ◽  
Qiang Xue ◽  
Shuo Yang ◽  
Tongtong Wang ◽  
Binwei Zhou

Background: Completing the transition from a sitting position to a standing position is a basic skill in people’s daily lives and is crucial for independent living. Lower limb dysfunction will bring many inconveniences into a person’s life and greatly affect their quality of life. Patients with lower limb dysfunction are a specialized group, and nursing problems for this group are becoming increasingly serious. Helping patients with lower limb dysfunction restore their lower limb mobility or assisting them to walk is a social problem necessary to be solved. Objective: : To review the recent sit-to-stand assistive devices based on hip support, classify them systematically and introduce their characteristics, including the mechanisms and the types of patients for which such mechanisms are applicable; to help patients with lower limb dysfunction or doctors (therapists) understand and choose a reasonable sit-to-stand assist device based on hip support. Methods: This paper summarizes literatures and patents about sit-to-stand assistive devices. From the aspects of structural characteristics, drive type and support modes based on the hip and applications situation, the advantages and disadvantages of the typical sit-to-stand assist devices are represented. Results: Current and future development trends on the structural characteristics, drive type and support modes based on the hip and applications situation of sit-to-stand assist devices are discussed to improve the humanization, modularization and applicability of sit-to-stand assist devices. Conclusion: Sit-to-stand assistive devices based on hip support can help patients improve the quality of their life, assist patients carrying out rehabilitation training, and delay the decline of lower limb function. However, the existing sit-to-stand assistive devices based on hip support need further improvement in the aspects of motion mechanism, new technology application and ergonomics design.


2018 ◽  
Vol 3 (3) ◽  
pp. 2473011418S0049
Author(s):  
Alicia Unangst ◽  
Kevin Martin ◽  
Anthony Mustovich ◽  
Jaime Chisholm

Category: Ankle Introduction/Purpose: Following lower extremity surgery patients are often required to utilize assistive devices in order to perform activities of daily living. As technology and assistive devices continue to improve, providers are faced with selecting a device that is safe while providing high patient satisfaction and a quick return to actives. The purpose of the current study was to compare physical exertion and subject preference between a hands-free single crutch and standard axillary crutches in foot and ankle patients. Methods: A prospective, randomized crossover study was performed using 35 orthopedic foot and ankle patients from within one treatment facility. Each participant had demographic data and heart rate recorded. The patients were then randomized to an assistive device. All participants completed a 6-minute walk test (6MWT); immediately following each 6MWT heart rate, self-selected walking velocity (SSWV), perceived exertion using OMNI Rating of Perceived Exertion (OMNI-RPE) and perceived dyspnea using Modified Borg Dyspnea Scale was obtained. The patients then completed another 6MWT using the other assistive device and was asked the same questions. After completing both 6MWTs participants were asked which assistive device they would prefer to use. Results: A total of 35 patients were included with a median age of 32-year-old. The hands-free crutch was preferred by 86% of participants. Regression analysis was used to test if factors such as gender, height, weight, BMI predicted patient preference of iWalk vs. Crutch. None of these factors were found to be significant. Student t-tests and ANOVAs were performed separately for dyspnea, fatigue ratings, distance (meters) and heart rate between iWalk and crutch all were found to be significant (p<0.05, p=1.13e-11, p=2.29e-13, p=5.21e-05, respectively). The axillary crutch group had higher SSWV (0.8 vs 0.77m/s) but was not found to be significant. Neither group had any falls, however, 58% of axillary participants complained of axillary/hand pain while the hands-free group had 14% complain of proximal strap discomfort. Conclusion: Patients preferred the hands-free crutch while reporting lower perceived dyspnea and fatigue. The hands-free group demonstrated lower physiologic demand, which correlated with patient perception.


Mathematics ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 244 ◽  
Author(s):  
Vildan Yazıcı ◽  
Zahir Muradoğlu

This study examined the deformation problem of a plate system (formed side-by-side) composed of multi-structure plates. It obtained numerical approaches of the transmission conditions on the common border of plates that composed the system. Numerical examples were solved in different boundary and transmission conditions.


Author(s):  
Petro Martyniuk ◽  
Oksana Ostapchuk ◽  
Vitalii Nalyvaiko

The problem of pollution transfer by water flow in open channel was considered. The mathematical model of the problem was constructed. The numerical solution of the onedimensional boundary problem was obtained. The computational algorithm for solving the problem was programmed to implement. A series of numerical experiments with their further analysis was conducted.


Biology ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1082
Author(s):  
Luiz Felipe da Silva ◽  
Paulo Francisco de Almeida-Neto ◽  
Dihogo Gama de Matos ◽  
Steven E. Riechman ◽  
Victor de Queiros ◽  
...  

Background: The exhaustive series of tests undergone by young athletes of Olympic rowing prior to important competitions imply loads of physical stress that can ultimately impact on mood and motivation, with negative consequences for their training and performance. Thus, it is necessary to develop a tool that uses only the performance of short distances but is highly predictive, offering a time expectancy with high reliability. Such a test must use variables that are easy to collect with high practical applicability in the daily routine of coaches. Objective: The objective of the present study was to develop a mathematical model capable of predicting 2000 m rowing performance from a maximum effort 100 m indoor rowing ergometer (IRE) test in young rowers. Methods: The sample consisted of 12 male rowing athletes in the junior category (15.9 ± 1.0 years). A 100 m time trial was performed on the IRE, followed by a 2000 m time trial 24-h later. Results: The 2000 m mathematical model to predict performance in minutes based on the maximum 100 m test demonstrated a high correlation (r = 0.734; p = 0.006), strong reliability index (ICC: 0.978; IC95%: [0.960; 0.980]; p = 0.001) and was within usable agreement limits (Bland -Altman Agreement: −0.60 to 0.60; 95% CI [−0.65; 0.67]). Conclusion: The mathematical model developed to predict 2000 m performance is effective and has a statistically significant reliability index while being easy to implement with low cost.


2021 ◽  
Vol 321 ◽  
pp. 03005
Author(s):  
George Kuvyrkin ◽  
Inga Savelyeva ◽  
Daria Kuvshinnikova

Nonlocal models of thermodynamics are becoming more and more popular in the modern world. Such models make it possible to describe materials with a complex structure and unique strength and temperature properties. Models of nonlocal thermodynamics of a continuous medium establish a relationship between micro and macro characteristics of materials. A mathematical model of thermal conductivity in nonlocal media is considered. The model is based on the theory of nonlocal continuum by A.K. Eringen. The interaction of material particles is described using local and nonlocal terms in the law of heat conduction. The nonlocal term describes the effect of decreasing the influence of the surrounding elements of the material structure with increasing distance. The effect of nonlocal influence is described using the standard non-locality function based on the Gaussian distribution. The nonlocality function depends on the distance between the elements of the material structure. The mathematical model of heat conduction in a nonlocal medium consists of an integro-differential heat conduction equation with initial and boundary conditions. A numerical solution to the problem of heat conduction in a nonlocal plate is obtained. The numerical solution of a two-dimensional problem based on the finite element method is described. The influence of nonlocal effects and material parameters on the thermal conductivity in a plate under highintensity surface heating is analyzed. The importance of nonlocal characteristics in modelling the thermodynamic behaviour of materials with a complex structure is demonstrated.


Sign in / Sign up

Export Citation Format

Share Document