scholarly journals Dynamic Bargain Game Theory in the Internet of Things for Data Trustworthiness

Sensors ◽  
2021 ◽  
Vol 21 (22) ◽  
pp. 7611
Author(s):  
Appasamy C. Sumathi ◽  
Muthuramalingam Akila ◽  
Rocío Pérez de Prado ◽  
Marcin Wozniak ◽  
Parameshachari Bidare Divakarachari

Smart home and smart building systems based on the Internet of Things (IoT) in smart cities currently suffer from security issues. In particular, data trustworthiness and efficiency are two major concerns in Internet of Things (IoT)-based Wireless Sensor Networks (WSN). Various approaches, such as routing methods, intrusion detection, and path selection, have been applied to improve the security and efficiency of real-time networks. Path selection and malicious node discovery provide better solutions in terms of security and efficiency. This study proposed the Dynamic Bargaining Game (DBG) method for node selection and data transfer, to increase the data trustworthiness and efficiency. The data trustworthiness and efficiency are considered in the Pareto optimal solution to select the node, and the bargaining method assigns the disagreement measure to the nodes to eliminate the malicious nodes from the node selection. The DBG method performs the search process in a distributed manner that helps to find an effective solution for the dynamic networks. In this study, the data trustworthiness was measured based on the node used for data transmission and throughput was measured to analyze the efficiency. An SF attack was simulated in the network and the packet delivery ratio was measured to test the resilience of the DBG and existing methods. The results of the packet delivery ratio showed that the DBG method has higher resilience than the existing methods in a dynamic network. Moreover, for 100 nodes, the DBG method has higher data trustworthiness of 98% and throughput of 398 Mbps, whereas the existing fuzzy cross entropy method has data trustworthiness of 94% and a throughput of 334 Mbps.

Due to the technology of IOT the human daily life services were became easier. With this technology the scalability will become very more to handle this kind of networks 6LOWPAN protocol was used, In this 6LOWPAn networks the RPL protocol was used to route the packets. The RPL protocol is constrain protocol particularly suits for the constrain node. Due to this constrain behavior this protocol may leads to many attacks. The attacks may be a black hole, wormhole, sinkhole etc. This paper was focused on Black hole attack. The black hole attack was simulated in the Contiki cooja simulator and proposed an detection approach based on the threshold value of each node in the network, to this black hole attack and the results was generated by using the contiki cooja simulator the results shows the effectiveness of the proposed technique in terms of the packet delivery rate, detection rate of attack.


2017 ◽  
Vol 18 (2) ◽  
pp. 137-150 ◽  
Author(s):  
Mohammad Reza Parsaei ◽  
Ahmad Reza Parnian ◽  
Samaneh Miri Rostami ◽  
Reza Javidan

ABSTRACT:  The wide address space provided by Internet Protocol version 6 (IPv6) lets any thing to be identified uniquely. consistency of the modified version of IPv6 protocol stack with smart objects, facilitated the Internet interconnection of the networks of smart objects and introduced Internet of things. A smart object is a small micro-electronic device that consists of a communication device, a small microprocessor and a sensor or an actuator. A network made of such devices is called low-power and lossy network. RPL routing protocol that is consistent to IPv6, is designed to be used in these kinds of networks. Load balancing is not considered in the RPL design process. Whenever RPL is used in large scale low-power and lossy networks some nodes will suffer from congestion and this problem severely degrades network performance. In this paper, we consider solutions provided to tackle RPL load balancing problems. Load balancing algorithms and protoclos are evaluated through simulation. We evaluate IETF RPL implementation and LB-RPL method with Contiki OS Java (COOJA) simulator. They are assessed comprehensively through metrics such as Packet delivery Ratio, Average End to End delay, and Gateway Throughput. LB-RPL improves RPL in terms of Packet delivery Ratio and throughput but increases Average End to End delay. Simulations results show that RPL load balancing needs extensive works to be performed yet.


Author(s):  
Jayaprakash Mayilsamy ◽  
Devi Priya Rangasamy

The Internet of Things (IoT) and Software Defined Network (SDN) are two development tools. The administrators organize SDN combined plans and the internet's corporate control by the Internet of Things in decoupling the plane and the flight information. The SDN Providence proposals flexible and programmable IoT in the network. Improvement of energy efficiency in assembly operations in the sequence of legal leadership and command of contract permits for the development of any creative office. Each of the most important processes that enable effective and cost-effective routing is planning and transportation management, including scheduling options. The existing system If Packaging and an optimal network deliver solutions to this problem. In each automatic carrier, there are limitations of breach capacity and time limit. The optimization model first level establishes an IoT Network and verifies the Request and response received the signal. The second step is to identify the effective insertion process and the practical data load balancing method for the two-term operations every process, and third level configures the IoT model. Finally, routing scheduling section included to identify the node features significantly change the reality. The similarities in planning, traffic management, and network planning need implicit. They will reduce cost and improve energy efficiency by eliminating the time to support them. Therefore, alignment, planning, routing and routing path selection in the production process are be mentioned throughout the similarities.


MIND Journal ◽  
2021 ◽  
Vol 5 (2) ◽  
pp. 135-148
Author(s):  
HERIANSYAH HERIANSYAH ◽  
AHMAD REYNALDI NOPRIANSYAH ◽  
SWADEXI ISTIQPHARA

AbstrakJaringan Ad hoc pada perangkat Internet of Things (IoT) mempunyai sifat yang yang dinamis dengan node pada jaringan yang berperan sebagai router dan bergerak bebas secara random tanpa bantuan infrasturktur komunikasi sehingga topologi berubah sangat cepat seiring dengan perubahan posisi. Perubahan ini sangat mempengaruhi kualitas layanan pada perangkat IoT itu sendiri. Penelitian ini bertujuan untuk mengevaluasi protocol routing yang sudah ada dengan cara mengimplementasikan routing protocol tersebut di perangkat testbed berbasis NodeMCU ESP8266. Hal ini bertujuan untuk memilih protocol routing yang paling optimal sebelum proses implementasi dilaksanakan. Pengujian ini berlaku untuk routing protocol yang sudah ada maupun yang baru. Kinerja protocol jaringan  diukur melalui nilai  Quality of Service (QoS) ditempatkan pada scenario berbeda yang terdiri dari throughput, delay, jitter, dan packet delivery ratio sesuai dengan perbedaan beban jaringan, mobilitas, dan ukuran jaringan. Hasil penelitian ini menunjukkan bahwa testbed  yang dibangun berhasil mensimulasikan routing protocol yang ada untuk menghasilkan QoS yang baik pada perangkat IoT.Kata kunci: IoT, routing protocol, testbed, QoS.AbstractAd hoc networks on Internet of Things (IoT) devices have dynamic characteristics where the nodes on this network can operate as routers and move freely randomly without using any communication infrastructure so that the topology changes very quickly along with changes in position. This adjustment has a significant impact on the IoT device's service quality. This study aims to evaluate the existing routing protocols by implementing the routing protocol in a testbed based on NodeMCU ESP8266. It aims to choose the most optimal routing protocol before the implementation process is carried out. This test applies to both existing and new routing protocols. Network protocol performance is measured by the Quality of Service (QoS) value which includes throughput, delay, jitter, and packet delivery ratio in different scenarios based on network load, mobility, and different network sizes. The results show that this study was successful in simulating routing protocol in order to provide good QoS on IoT devices.Keywords: IoT, routing protocol, testbed, QoS.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 5997
Author(s):  
Zahrah A. Almusaylim ◽  
NZ Jhanjhi ◽  
Abdulaziz Alhumam

The rapid growth of the Internet of Things (IoT) and the massive propagation of wireless technologies has revealed recent opportunities for development in various domains of real life, such as smart cities and E-Health applications. A slight defense against different forms of attack is offered for the current secure and lightweight Routing Protocol for Low Power and Lossy Networks (RPL) of IoT resource-constrained devices. Data packets are highly likely to be exposed in transmission during data packet routing. The RPL rank and version number attacks, which are two forms of RPL attacks, can have critical consequences for RPL networks. The studies conducted on these attacks have several security defects and performance shortcomings. In this research, we propose a Secure RPL Routing Protocol (SRPL-RP) for rank and version number attacks. This mainly detects, mitigates, and isolates attacks in RPL networks. The detection is based on a comparison of the rank strategy. The mitigation uses threshold and attack status tables, and the isolation adds them to a blacklist table and alerts nodes to skip them. SRPL-RP supports diverse types of network topologies and is comprehensively analyzed with multiple studies, such as Standard RPL with Attacks, Sink-Based Intrusion Detection Systems (SBIDS), and RPL+Shield. The analysis results showed that the SRPL-RP achieved significant improvements with a Packet Delivery Ratio (PDR) of 98.48%, a control message value of 991 packets/s, and an average energy consumption of 1231.75 joules. SRPL-RP provided a better accuracy rate of 98.30% under the attacks.


With a predicted 50 billion devices by the end of 2020, the Internet of things has grown exponentially in the last few years. This growth has seen an increasing demand for mobility support in low power and lossy sensor networks, a type of network characterized by several limitations in terms of their resources including CPU, memory and batter, causing manufactures to push products out to the market faster, without the necessary security features. IoT networks rely on the Routing Protocol for Low Power and Lossy Network (RPL) for communication, designed by the Internet Engineering Task Force (IETF). This protocol has been proven to be efficient in relation to the handling of routing in such constrained networks, However, research studies revealed that RPL was inherently designed for static networks, indicating poor handling of mobile or dynamic topologies which is worsen when introducing mobile attacker. In this paper, two IoT routing attacks are evaluated under a mobile attacker with the aim of providing a critical evaluation of the impact the attacks have on the network in comparison to the case with static attacker. The first attack is the Rank attack in which the attacker announces false routing information to its neighbour attracting them to forward their data via the attacker. The second attack is the DIS attack in which the attacker floods the network with DIS messages triggering them to reset their transmission timers and sending messages more frequently. The comparison were conducted in terms of average power consumption and also the packet delivery ratio (PDR). Based on the results collected from the simulations, it was established that when an attacking node is mobile, there’s an average increase of 36.6 in power consumption and a decrease of 14 for packet delivery ratios when compared to a static attacking node.


2019 ◽  
Author(s):  
Francisco Da Ponte ◽  
Gabriel Galdino ◽  
Alexandre Rocha ◽  
Denis Rosário ◽  
Joaquim Celestino Jr ◽  
...  

The growth of the Internet of Things (IoT) paradigm, popularized the use of wireless devices in the most diverse environments, creating the concept of Smart Environments (SE). SEs can be anything from a factory floor to our homes and are equipped with intelligent devices that automate most human activities. These devices suffer from the coexistence problem, as they often use the 2.4 GHz ISM band to communicate. In this context, this article presents the CASE algorithm to minimize interference in those environments through the proper allocation of wireless channels. The results suggest that the proposed algorithm reduces total interference as well as maximizes packet delivery when compared to existing approaches.


2020 ◽  
Vol 63 (6) ◽  
pp. 958-973
Author(s):  
Muhammad Omer Farooq

Abstract The routing protocol for low-power and lossy networks (RPL) is a standard routing framework for Internet of Things (IoT). It supports multipoint-to-point (MP-to-P), point-to-point (P-to-P) and point-to-multipoint (P-to-MP) communications. It is known that RPL’s control overhead can result in the protocol’s poor performance in P-to-P and P-to-MP communications especially in its non-storing mode of operation. Here, we present a routing protocol for the Internet of Things (RIoT) that supports MP-to-P, P-to-P and P-to-MP communications. The protocol can construct P-to-P and P-to-MP routes with relatively lower control overhead. Another salient feature of RIoT is that it supports multiple gateways in the same network with an aim to reduce memory requirement for storing a forwarding table. Furthermore, RIoT is also capable of handling mobility-based IoT use cases. To facilitate communication among nodes connected to different gateways in the same network, here we also present an inter-gateway communication mechanism. We implemented RIoT in the Contiki operating system, and it is extensively evaluated using emulation and real testbed-based experiments. We analyzed the impact of the number of gateways, radio duty cycling (RDC) and mobility on the routing protocols’ performance. Our results demonstrate that either with or without RDC RIoT demonstrates statistically significantly better packet delivery ratio, per-packet end-to-end delay and control overhead compared to the RPL-based protocol. RIoT’s multi-gateway communication architecture substantially reduces the memory requirement to store a forwarding table. Our results also demonstrate that multiple gateways in a network reduce the network partitioning problem in mobile scenarios. Hence, RIoT also demonstrates better performance in mobile scenarios compared to the RPL-based protocol.


However the black hole attack prevention has been proposed earlier but it is observed that the packet dropping increases constantly as the number of black hole attack are increased. The proposed work is making use of fuzzy logic. This mechanism allows the random node selection so it is supposed to maintain the packet delivery ratio. Results of this research show that the proposed mechanisms do not allow packet dropping on constant rate. Many studies are made that are simulating influence of attack made by .black .hole in the network based on .AODV. It has been observed that there is constant fall in the packet dropping ratio if number of malicious packet increases. This paper has represented the Black Hole attack over AODV routing when random node selection mechanism is applied. Proposed work is allowing selection of nodes on random basis. Such mechanism is supposed to improve the ratio of delivery of packet. Results of Simulation indicates the impact of black hole attack over packet delivery ratio , packet .loss .ratio, .Average .end to .end delivery, and .routing over head. Moreover the comparative analysis of .traditional and .proposed model is made considering packet delivery ratio.


Mobile Ad-hoc Network (MANET) is infrastructure-less network that consists of a set of mobile nodes. These nodes have limited power based on their batteries. Network lifetime is one of the most important challenges facing this type of networks; motivating many researchers to investigate alternatives that prolong the network lifetime. This paper proposes a new path selection metric that considers the ratio between the minimum residual energy of all route nodes and hop count value to select a rout in MDSR routing protocol. The discovered paths are checked periodically for ensuring their availabilities using special packets called DTC. Glomosim simulator is used to compare the modified MDSR protocol with the traditional MDSR and other existing protocols as well. Simulation results showed that the proposed routing protocol outperformed the traditional MDSR protocol in terms of network lifetime, packet delivery ratio and end to end delay. Moreover, it showed improved performance over other existing protocols in terms of packet delivery ratio and network lifetime.


Sign in / Sign up

Export Citation Format

Share Document