scholarly journals A Distance Increment Smoothing Method and Its Application on the Detection of NLOS in the Cooperative Positioning

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8028
Author(s):  
Dongqing Zhao ◽  
Dongmin Wang ◽  
Minzhi Xiang ◽  
Jinfei Li ◽  
Chaoyong Yang ◽  
...  

The wide use of cooperative missions using multiple unmanned platforms has made relative distance information an essential factor for cooperative positioning and formation control. Reducing the range error effectively in real time has become the main technical challenge. We present a new method to deal with ranging errors based on the distance increment (DI). The DI calculated by dead reckoning is used to smooth the DI obtained by the cooperative positioning, and the smoothed DI is then used to detect and estimate the non-line-of-sight (NLOS) error as well as to smooth the observed values containing random noise in the filtering process. Simulation and experimental results show that the relative accuracy of NLOS estimation is 8.17%, with the maximum random error reduced by 40.27%. The algorithm weakens the influence of NLOS and random errors on the measurement distance, thus improving the relative distance precision and enhancing the stability and reliability of cooperative positioning.

2021 ◽  
Vol 9 (7) ◽  
pp. 772
Author(s):  
Huixuan Fu ◽  
Shichuan Wang ◽  
Yan Ji ◽  
Yuchao Wang

This paper addressed the formation control problem of surface unmanned vessels with model uncertainty, parameter perturbation, and unknown environmental disturbances. A formation control method based on the control force saturation constraint and the extended state observer (ESO) was proposed. Compared with the control methods which only consider the disturbances from external environment, the method proposed in this paper took model uncertainties, parameter perturbation, and external environment disturbances as the compound disturbances, and the ESO was used to estimate and compensate for the disturbances, which improved the anti-disturbance performance of the controller. The formation controller was designed with the virtual leader strategy, and backstepping technique was designed with saturation constraint (SC) function to avoid the lack of force of the actuator. The stability of the closed-loop system was analyzed with the Lyapunov method, and it was proved that the whole system is uniformly and ultimately bounded. The tracking error can converge to arbitrarily small by choosing reasonable controller parameters. The comparison and analysis of simulation experiments showed that the controller designed in this paper had strong anti-disturbance and anti-saturation performance to the compound disturbances of vessels and can effectively complete the formation control.


1994 ◽  
Vol 116 (4) ◽  
pp. 550-555 ◽  
Author(s):  
M. Gremaud ◽  
W. Cheng ◽  
I. Finnie ◽  
M. B. Prime

Introducing a thin cut from the surface of a part containing residual stresses produces a change in strain on the surface. When the strains are measured as a function of the depth of the cut, residual stresses near the surface can be estimated using the compliance method. In previous work, the unknown residual stress field was represented by a series of continuous polynomials. The present paper shows that for stress states with steep gradients, superior predictions are obtained by using “overlapping piecewise functions” to represent the stresses. The stability of the method under the influence of random errors and a zero shift is demonstrated by numerical simulation.


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Xuejing Lan ◽  
Zhenghao Wu ◽  
Wenbiao Xu ◽  
Guiyun Liu

This paper considers the region-based formation control for a swarm of robots with unknown nonlinear dynamics and disturbances. An adaptive neural network is designed to approximate the unknown nonlinear dynamics, and the desired formation shape is achieved by designing appropriate potential functions. Moreover, the collision avoidance, velocity consensus, and region tracking are all considered in the controller. The stability of the multirobot system has been demonstrated based on the Lyapunov theorem. Finally, three numerical simulations show the effectiveness of the proposed formation control scheme to deal with the narrow space, loss of robots, and formation merging problems.


Sensors ◽  
2018 ◽  
Vol 18 (11) ◽  
pp. 3748 ◽  
Author(s):  
Chengkai Tang ◽  
Lingling Zhang ◽  
Yi Zhang ◽  
Houbing Song

The development of smart cities calls for improved accuracy in navigation and positioning services; due to the effects of satellite orbit error, ionospheric error, poor quality of navigation signals and so on, it is difficult for existing navigation technology to achieve further improvements in positioning accuracy. Distributed cooperative positioning technology can further improve the accuracy of navigation and positioning with existing GNSS (Global Navigation Satellite System) systems. However, the measured range error and the positioning error of the cooperative nodes exhibit larger reductions in positioning accuracy. In response to this question, this paper proposed a factor graph-aided distributed cooperative positioning algorithm. It establishes the confidence function of factor graphs theory with the ranging error and the positioning error of the coordinated nodes and then fuses the positioning information of the coordinated nodes by the confidence function. It can avoid the influence of positioning error and ranging error and improve the positioning accuracy of cooperative nodes. In the simulation part, the proposed algorithm is compared with a mainly coordinated positioning algorithm from four aspects: the measured range error, positioning error, convergence speed, and mutation error. The simulation results show that the proposed algorithm leads to a 30–60% improvement in positioning accuracy compared with other algorithms under the same measured range error and positioning error. The convergence rate and mutation error elimination times are only 1 / 5 to 1 / 3 of the other algorithms.


2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Jawhar Ghommam ◽  
Luis F. Luque-Vega ◽  
Maarouf Saad

In this paper, group formation control with collision avoidance is investigated for heterogeneous multiquadrotor vehicles. Specifically, the distance-based formation and tracking control problem are addressed in the framework of leader-follower architecture. In this scheme, the leader is assigned the task of intercepting a target whose velocity is unknown, while the follower quadrotors are arranged to set up a predefined rigid formation pattern, ensuring simultaneously interagent collision avoidance and relative localization. The adopted strategy for the control design consists in decoupling the quadrotor dynamics in a cascaded structure to handle its underactuated property. Furthermore, by imposing constraints on the orientation angles, the follower will never be overturned. Rigorous stability analysis is presented to prove the stability of the entire closed-loop system. Numerical simulation results are presented to validate the proposed control strategy.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lina Jin ◽  
Shuanghe Yu ◽  
Dongxu Ren

This paper deals with the circular formation control problem of multiagent systems for achieving any preset phase distribution. The control problem is decomposed into two parts: the first is to drive all the agents to a circle which either needs a target or not and the other is to arrange them in positions distributed on the circle according to the preset relative phases. The first part is solved by designing a circular motion control law to push the agents to approach a rotating transformed trajectory, and the other is settled using a phase-distributed protocol to decide the agents’ positioning on the circle, where the ring topology is adopted such that each agent can only sense the relative positions of its neighboring two agents that are immediately in front of or behind it. The stability of the closed-loop system is analyzed, and the performance of the proposed controller is verified through simulations.


Author(s):  
Akira Okamoto ◽  
Dean B. Edwards

Various control algorithms have been developed for fleets of autonomous vehicles. Many of the successful control algorithms in practice are behavior-based control or nonlinear control algorithms, which makes analyzing their stability difficult. At the same time, many system theoretic approaches for controlling a fleet of vehicles have also been developed. These approaches usually use very simple vehicle models such as particles or point-mass systems and have only one coordinate system which allows stability to be proven. Since most of the practical vehicle models are six-degree-of-freedom systems defined relative to a body-fixed coordinate system, it is difficult to apply these algorithms in practice. In this paper, we consider a formation regulation problem as opposed to a formation control problem. In a formation control problem, convergence of a formation from random positions and orientations is considered, and it may need a scheme to integrate multiple moving coordinates. On the contrary, in a formation regulation problem, it is not necessary since small perturbations from the nominal condition, in which the vehicles are in formation, are considered. A common origin is also not necessary if the relative distance to neighbors or a leader is used for regulation. Under these circumstances, the system theoretic control algorithms are applicable to a formation regulation problem where the vehicle models have six degrees of freedom. We will use a realistic six-degree-of-freedom model and investigate stability of a fleet using results from decentralized control theory. We will show that the leader-follower control algorithm does not have any unstable fixed modes if the followers are able to measure distance to the leader. We also show that the leader-follower control algorithm has fixed modes at the origin, indicating that the formation is marginally stable, when the relative distance measurements are not available. Multi-vehicle simulations are performed using a hybrid leader-follower control algorithm where each vehicle is given a desired trajectory to follow and adjusts its velocity to maintain a prescribed distance to the leader. Each vehicle is modeled as a three-degree-of-freedom system to investigate the vehicle’s motion in a horizontal plane. The examples show efficacy of the analysis.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Xiaofeng Chai ◽  
Qing Wang ◽  
Yao Yu ◽  
Changyin Sun

Time-varying output formation control problems for high-order time-invariant swarm systems are studied with nonlinear uncertainties and directed network topology in this paper. A robust controller which consists of a nominal controller and a robust compensator is applied to achieve formation control. The nominal controller based on the output feedback is designed to achieve desired time-varying formation properties for the nominal system. And the robust compensator based on the robust signal compensator technology is constructed to restrain nonlinear uncertainties. The time-varying formation problem is transformed into the stability problem. And the formation errors can be arbitrarily small with expected convergence rate. Numerical examples are provided to illustrate the effectiveness of the proposed strategy.


2017 ◽  
Vol 41 (6) ◽  
pp. 860-876
Author(s):  
David Martín-Moncunill ◽  
Miguel Angel Sicilia-Urban ◽  
Elena García-Barriocanal ◽  
Christian M. Stracke

Purpose The common understanding of generalization/specialization relations assumes the relation to be equally strong between a classifier and any of its related classifiers and also at every level of the hierarchy. Assigning a grade of relative distance to represent the level of similarity between the related pairs of classifiers could correct this situation, which has been considered as an oversimplification of the psychological account of the real-world relations. The paper aims to discuss these issues. Design/methodology/approach The evaluation followed an end-user perspective. In order to obtain a consistent data set of specialization distances, a group of 21 persons was asked to assign values to a set of relations from a selection of terms from the AGROVOC thesaurus. Then two sets of representations of the relations between the terms were built, one according to the calculated concept of specialization weights and the other one following the original order of the thesaurus. In total, 40 persons were asked to choose between the two sets following an A/B test-like experiment. Finally, short interviews were carried out after the test to inquiry about their decisions. Findings The results show that the use of this information could be a valuable tool for search and information retrieval purposes and for the visual representation of knowledge organization systems (KOS). Furthermore, the methodology followed in the study turned out to be useful for detecting inconsistencies in the thesaurus and could thus be used for quality control and optimization of the hierarchical relations. Originality/value The use of this relative distance information, namely, “concept specialization distance,” has been proposed mainly at a theoretical level. In the current experiment, the authors evaluate the potential use of this information from an end-user perspective, not only for text-based interfaces but also its application for the visual representation of KOS. Finally, the methodology followed for the elaboration of the concept specialization distance data set showed potential for detecting possible inconsistencies in KOS.


Sign in / Sign up

Export Citation Format

Share Document