scholarly journals Assessing Vehicle Profiling Accuracy of Handheld LiDAR Compared to Terrestrial Laser Scanning for Crash Scene Reconstruction

Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8076
Author(s):  
Jairaj Desai ◽  
Jidong Liu ◽  
Robert Hainje ◽  
Robert Oleksy ◽  
Ayman Habib ◽  
...  

Forensic crash investigation often requires developing detailed profiles showing the location and extent of vehicle damage to identify impact areas, impact direction, deformation, and estimated vehicle speeds at impact. Traditional damage profiling techniques require extended and comprehensive setups for mapping and measurement that are quite labor- and time-intensive. Due to the time involved, this damage profiling is usually done in a remote holding area after the crash scene is cleared. Light detection and ranging (LiDAR) scanning technology in consumer handheld electronic devices, such as smartphones and tablets, holds significant potential for conducting this damage profile mapping in just a few minutes, allowing the mapping to be conducted at the scene before the vehicle(s) are moved. However, there is limited research and even scarcer published literature on field procedures and/or accuracy for these emerging smartphones and tablets with LiDAR. This paper proposes a methodology and subsequent measurement accuracy comparisons for survey-grade terrestrial laser scanning (TLS) and handheld alternatives. The maximum root mean square error (RMSE) obtained for profile distance between handheld (iPad) and survey-grade TLS LiDAR scans for a damaged vehicle was observed to be 3 cm, a level of accuracy that is likely sufficient and acceptable for most forensic studies.

Geosciences ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 242 ◽  
Author(s):  
Pawel Burdziakowski ◽  
Pawel Tysiac

The paper addresses the fields of combined close-range photogrammetry and terrestrial laser scanning in the light of ship modelling. The authors pointed out precision and measurement accuracy due to their possible complex application for ship hulls inventories. Due to prescribed vitality of every ship structure, it is crucial to prepare documentation to support the vessel processes. The presented methods are directed, combined photogrammetric techniques in ship hull inventory due to submarines. The class of photogrammetry techniques based on high quality photos are supposed to be relevant techniques of the inventories’ purpose. An innovative approach combines these methods with Terrestrial Laser Scanning. The process stages of data acquisition, post-processing, and result analysis are presented and discussed due to market requirements. Advantages and disadvantages of the applied methods are presented.


2018 ◽  
Vol 142 (11-12) ◽  
pp. 576-577 ◽  
Author(s):  
Mateo Gašparović ◽  
Ivan Balenović ◽  
Ante Seletković ◽  
Anita Simic Milas

Digitalni model reljefa (DTM, engl. Digital Terrain Model) ima široku i važnu primjenu u mnogim djelatnostima, uključujući i šumarstvo. Međutim, precizno modeliranje terena, odnosno izrada DTM-a u šumama, bilo korištenjem terenskih metoda ili metoda daljinskih istraživanja, izazovan je i vrlo zahtjevan zadatak. U većini razvijenih zemalja svijeta, zračno lasersko skeniranje (ALS, engl. Airborne Laser Scanning) bazirano na LiDAR (engl. Light Detection and Ranging) tehnologiji trenutno predstavlja glavnu metodu za izradu DTM-a. Uslijed mogućnosti laserskog zračenja da penetrira kroz krošnje drveća, LiDAR tehnologija se pokazala kao efektivna i brza metoda za izradu DTM-a u šumskim područjima s vrlo velikom točnošću. Međutim, u mnogim zemljama svijeta, uključujući i Hrvatsku, zračno lasersko skeniranje nije u potpunosti provedeno, tj. samo su manji dijelovi zemlje pokriveni s podacima zračnog laserskog skeniranja. U tim slučajevima, DTM temeljen na stereo-fotogrametrijskoj izmjeri aerosnimaka potpomognut s terenskim podacima najčešće predstavlja glavni izvor informacija za izradu DTM-a. Poznato je da tako izrađen DTM u šumskim predjelima ima manju točnost od DTM-a dobivenog na temelju zračnog laserskog skeniranja zbog pokrivenosti terena vegetacijom. Također, u okviru nedavno provedenog istraživanja (Balenović i dr., 2018) utvrđeno je da takvi službeni fotogrametrijski digitalni podaci terena u šumskim predjelima sadrže određen broj tzv. grubih grešaka, koje mogu značajno utjecati na točnost izrađenog DTM-a. Nakon vizualnog detektiranja i manualnog uklanjanja tih pogrešaka, Balenović i dr. (2018) utvrdili su značajno poboljšanje točnosti fotogrametrijskog DTM-a. Stoga je glavni cilj ovoga rada razviti automatsku metodu za detekciju i eliminaciju vertikalnih pogrešaka u fotogrametrijskim digitalnim podacima terena te na taj način poboljšati točnost fotogrametrijskog DTM-a u nizinskim šumskim područjima Hrvatske. Ideja je razviti brzu, jednostavnu i učinkovitu metodu koja će biti primjenjiva i za druga šumska područja sličnih karakteristika, a za koja ne postoje DTM dobiven zračnim laserskim skeniranjem. Istraživanje je provedeno u nizinskim šumama na području gospodarske jedinice Jastrebarski lugovi, u neposrednoj blizini Jastrebarskog (Slika 1). Istraživanjem je obuhvaćena površina od 2.005,74 ha, na kojoj su u najvećoj mjeri zastupljene jednodobne sastojine hrasta lužnjaka (Quercus robur L.), a u ma­njoj mjeri jednodobne sastojine poljskog jasena (Fraxinus angustifolia L.) te jednodobne sastojine običnoga graba (Carpinus betulus L.). Nadmorska visina područja istraživanja kreće se u rasponu od 105 do 121 m. Fotogrametrijski DTM (DTM<sub>PHM</sub>) je izrađen iz digitalnih vektorskih podataka terena (prijelomnice, linije oblika, markantne točke terena i pravokutne mreže visinskih točaka) nabavljenih iz Državne geodetske uprave (Slika 2). Ti podaci predstavljaju nacionalni standard i jedini su dostupni podaci za izradu DTM-a u Hrvatskoj. Detaljan opis vektorskih podataka dan je u radu Balenović i dr. (2018). Prvo je iz digitalnih terenskih podataka izrađena nepravilna mreža trokuta, koja je potom linearnom interpolacijom pretvorena u rasterski DTM<sub>PHM</sub> prostorne rezolucije (veličine piksela) 0,5 m. Automatska metoda za detekciju i eliminaciju vertikalnih pogrešaka fotogrametrijskog DTM-a u nizinskim šumskim područjima razvijena je u slobodnom programskom paketu Grass GIS (Slika 3). Kombinacijom vrijednosti nagiba i tangencijalne zakrivljenosti terena rasterskog DTM<sub>PHM</sub> (Slika 4), automatskom metodom su detektirane 91 grube greške (engl. outliers). Drugim riječima, utvrđeno je da 91 točkasti vektorski objekt pogrešno prikazuje stvarnu visinu terena. Navedeni broj čini 3,2 % od ukupnog broja točkastih objekata korištenih za izradu DTM<sub>PHM</sub>-a. Nakon eliminacije detektiranih pogrešaka izrađen je novi, korigirani fotogrametrijski DTM (DTM<sub>PHMc</sub>). Za ocjenu vertikalne točnosti izvornog (DTM<sub>PHM</sub>) i korigiranog DTM-a (DTM<sub>PHMc</sub>) korišten je visoko precizni DTM dobiven zračnim laserskim skeniranjem (DTM<sub>LiD</sub>). U tu svrhu su izrađeni rasteri razlika između DTM<sub>PHM </sub>i DTM<sub>LiD</sub>, te između DTM<sub>PHMc </sub>i DTM<sub>LiD</sub>. Kako je preliminarnom analizom utvrđeno da vertikalne razlike između DTM<sub>PHM </sub>i DTM<sub>LiD</sub> nisu normalno distribuirane (Slika 5), za ocjenu točnosti su uz normalne mjere točnosti korištene i tzv. robusne mjere točnosti (Tablica 2). Dobiveni rezultati ukazuju na poboljšanje vertikalne točnosti fotogrametrijskog DTM-a primjenom razvijene automatske metode. To je posebice uočljivo na podpodručjima 2 i 3 (Slika 6 i 7) u kojima se nakon uklanjanja detektiranih grešaka, korijen srednje kvadratne pogreške (RMSE, engl. root mean square error) smanjio za 8 % odnosno 50 % (Tablica 2). Na temelju dobivenih rezultata i usporedbe s DTM<sub>LiD</sub>, može se zaključiti da predložena metoda uspješno detektira i eliminira vertikalne pogreške fotogrametrijskog DTM-a u nizinskim šumskim područjima, te slijedom toga poboljšava njegovu vertikalnu točnost.


2020 ◽  
Vol 59 (33) ◽  
pp. 10243
Author(s):  
Jindřich Brzobohatý ◽  
Filip Šmejkal ◽  
Petr Pokorný

2009 ◽  
Vol 46 (12) ◽  
pp. 1379-1390 ◽  
Author(s):  
Michel Jaboyedoff ◽  
Denis Demers ◽  
Jacques Locat ◽  
Ariane Locat ◽  
Pascal Locat ◽  
...  

For more than 10 years, digital elevation models (DEM) produced by light detection and ranging (LIDAR) technology have provided new tools for geomorphologic studies and especially for landslide studies. In particular, terrestrial laser scanning (TLS) provides a great versatility of use. TLS can be used either for monitoring purposes or in an emergency situation that necessitates a rapid DEM acquisition for assessing a hazard. Using three examples we demonstrate the usefulness of TLS for landslide volume quantification, profile creation, and time series analysis. These case studies are landslides located in sensitive clays of eastern Canada (Quebec, Canada) or small rotational slides in river banks (Switzerland).


2021 ◽  
Vol 974 (8) ◽  
pp. 2-12
Author(s):  
A.A. Sharafutdinova ◽  
M.J. Bryn

Terrestrial laser scanning and digital information modeling are increasingly practiced every year to solve application tasks at various stages of the industrial facility’s life cycle. In this regard, the task of formulating the requirements for the accuracy of performing terrestrial laser scanning for the subsequent forming digital information models becomes more and more calling. In this article we analyzed the types of engineering and geodetic works by which engineering tasks are solved at various stages of the industrial facility’s life cycle in order to create an accuracy requirement. An analysis of the regulatory and technical documentation that specifies doing these works was also made. Basing on it, the relationship between the measurement accuracy characteristics specified in the regulatory and technical documentation (design, construction and operational) and the mean square errors in determining the position of points is described. The authors propose a scheme for transition from the characteristics of the measurements accuracy to the mean square errors of determining the position of points for each type of engineering and geodetic work. The results of this study can be used at planning terrestrial laser scanning of industrial facilities. Basing on the above requirements for the accuracy of the geodetic work, it is possible to formulate a methodology for carrying out each stage of the TLS technological scheme.


2021 ◽  
Vol 7 (1) ◽  
pp. 51-83
Author(s):  
Davide Tanasi ◽  
Stephan Hassam ◽  
Kaitlyn Kingsland ◽  
Paolo Trapani ◽  
Matthew King ◽  
...  

Abstract The archaeological site of the Domus Romana in Rabat, Malta was excavated almost 100 years ago yielding artefacts from the various phases of the site. The Melite Civitas Romana project was designed to investigate the domus, which may have been the home of a Roman Senator, and its many phases of use. Pending planned archaeological excavations designed to investigate the various phases of the site, a team from the Institute for Digital Exploration from the University of South Florida carried out a digitization campaign in the summer of 2019 using terrestrial laser scanning and aerial digital photogrammetry to document the current state of the site to provide a baseline of documentation and plan the coming excavations. In parallel, structured light scanning and photogrammetry were used to digitize 128 artefacts in the museum of the Domus Romana to aid in off-site research and create a virtual museum platform for global dissemination.


2021 ◽  
Vol 13 (3) ◽  
pp. 507
Author(s):  
Tasiyiwa Priscilla Muumbe ◽  
Jussi Baade ◽  
Jenia Singh ◽  
Christiane Schmullius ◽  
Christian Thau

Savannas are heterogeneous ecosystems, composed of varied spatial combinations and proportions of woody and herbaceous vegetation. Most field-based inventory and remote sensing methods fail to account for the lower stratum vegetation (i.e., shrubs and grasses), and are thus underrepresenting the carbon storage potential of savanna ecosystems. For detailed analyses at the local scale, Terrestrial Laser Scanning (TLS) has proven to be a promising remote sensing technology over the past decade. Accordingly, several review articles already exist on the use of TLS for characterizing 3D vegetation structure. However, a gap exists on the spatial concentrations of TLS studies according to biome for accurate vegetation structure estimation. A comprehensive review was conducted through a meta-analysis of 113 relevant research articles using 18 attributes. The review covered a range of aspects, including the global distribution of TLS studies, parameters retrieved from TLS point clouds and retrieval methods. The review also examined the relationship between the TLS retrieval method and the overall accuracy in parameter extraction. To date, TLS has mainly been used to characterize vegetation in temperate, boreal/taiga and tropical forests, with only little emphasis on savannas. TLS studies in the savanna focused on the extraction of very few vegetation parameters (e.g., DBH and height) and did not consider the shrub contribution to the overall Above Ground Biomass (AGB). Future work should therefore focus on developing new and adjusting existing algorithms for vegetation parameter extraction in the savanna biome, improving predictive AGB models through 3D reconstructions of savanna trees and shrubs as well as quantifying AGB change through the application of multi-temporal TLS. The integration of data from various sources and platforms e.g., TLS with airborne LiDAR is recommended for improved vegetation parameter extraction (including AGB) at larger spatial scales. The review highlights the huge potential of TLS for accurate savanna vegetation extraction by discussing TLS opportunities, challenges and potential future research in the savanna biome.


Sign in / Sign up

Export Citation Format

Share Document