scholarly journals Impact of Sensor Data Characterization with Directional Nature of Fault and Statistical Feature Combination for Defect Detection on Roll-to-Roll Printed Electronics

Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8454
Author(s):  
Yoonjae Lee ◽  
Minho Jo ◽  
Gyoujin Cho ◽  
Changbeom Joo ◽  
Changwoo Lee

Gravure printing, which is a roll-to-roll printed electronics system suitable for high-speed patterning of functional layers have advantages of being applied to flexible webs in large areas. As each of the printing procedure from inking to doctoring followed by ink transferring and setting influences the quality of the pattern geometry, it is necessary to detect and diagnose factors causing the printing defects beforehand. Data acquisition with three triaxial acceleration sensors for fault diagnosis of four major defects such as doctor blade tilting fault was obtained. To improve the diagnosis performances, optimal sensor selection with Sensor Data Efficiency Evaluation, sensitivity evaluation for axis selection with Directional Nature of Fault and feature variable optimization with Feature Combination Matrix method was applied on the raw data to form a Smart Data. Each phase carried out on the raw data progressively enhanced the diagnosis results in contents of accuracy, positive predictive value, diagnosis processing time, and data capacity. In the case of doctor blade tilting fault, the diagnosis accuracy increased from 48% to 97% with decreasing processing time of 3640 s to 16 s and the data capacity of 100 Mb to 5 Mb depending on the input data between raw data and Smart Data.

Author(s):  
Chung Hwan Kim ◽  
Ha-Il You ◽  
Seung-Hyun Lee

The manufacture of printed electronics by roll-to-roll printing machine requires more accurate register performance than conventional media printing technology. Moreover, high drying temperature and long drying time to sinter the inks can induce the substantial changes in the length of the substrate and consequently register errors. Among the roll-to-roll printing methods, the gravure one, despite its relatively fast productivity and fine-line printing capacity, has difficulty in achieving the required register specifications for printed electronics because of the dependence of the register control on web dynamics. This study proposes a roll-to-roll gravure-offset printing equipment, including the register measurement system designed to enhance register performance and the related register control method for the application of printed electronics. Each cylinder constituting the printing unit is driven independently by an individual servomotor. Moreover, the printing patterns of the plate cylinder can move in the axial direction by position control, as well as in the web transport direction by a phase shift of the plate cylinder, without affecting the dynamics of the web. The time difference between the measurement and the actual control action is considered and modeled. The register measurement system, including selections of sensors and marks is also proposed to consider the effect of the time difference. The simulation results and the experiments of the register control are shown to verify the effect of the time difference on the control performances. It is found that a proper estimation of time difference should be obtained in order to guarantee more accurate and stable control performances.


2018 ◽  
Vol 8 (2) ◽  
pp. 312 ◽  
Author(s):  
Kui He ◽  
Shanhui Liu ◽  
Kedian Wang ◽  
Xuesong Mei

2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


Author(s):  
G. S. Karthick ◽  
P. B. Pankajavalli

The rapid innovations in technologies endorsed the emergence of sensory equipment's connection to the Internet for acquiring data from the environment. The increased number of devices generates the enormous amount of sensor data from diversified applications of Internet of things (IoT). The generation of data may be a fast or real-time data stream which depends on the nature of applications. Applying analytics and intelligent processing over the data streams discovers the useful information and predicts the insights. Decision-making is a prominent process which makes the IoT paradigm qualified. This chapter provides an overview of architecting IoT-based healthcare systems with different machine learning algorithms. This chapter elaborates the smart data characteristics and design considerations for efficient adoption of machine learning algorithms into IoT applications. In addition, various existing and hybrid classification algorithms are applied to sensory data for identifying falls from other daily activities.


Polymers ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 245 ◽  
Author(s):  
Sang Lee ◽  
Sangyoon Lee

Although printed electronics technology has been recently employed in the production of various devices, its use for the fabrication of electronic devices with air-gap structures remains challenging. This paper presents a productive roll-to-roll printed electronics method for the fabrication of capacitive touch sensors with air-gap structures. Each layer of the sensor was fabricated by printing or coating. The bottom electrode, and the dielectric and sacrificial layers were roll-to-roll slot-die coated on a flexible substrate. The top electrode was formed by roll-to-roll gravure printing, while the structural layer was formed by spin-coating. In particular, the sacrificial layer was coated with polyvinyl alcohol (PVA) and removed in water to form an air-gap. The successful formation of the air-gap was verified by field emission scanning electron microscopy (FE-SEM). Electrical characteristics of the air-gap touch sensor samples were analyzed in terms of sensitivity, hysteresis, and repeatability. Experimental results showed that the proposed method can be suitable for the fabrication of air-gap sensors by using the roll-to-roll printed electronics technology.


Sign in / Sign up

Export Citation Format

Share Document