scholarly journals A Survey of 802.15.4 TSCH Schedulers for a Standardized Industrial Internet of Things

Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 15
Author(s):  
Andreas Ramstad Urke ◽  
Øivind Kure ◽  
Knut Øvsthus

Concepts such as Industry 4.0 and Cyber-Physical Systems may bring forward a new industrial revolution. These concepts require extensive connectivity far beyond what is provided by traditional industrial networks. The Industrial Internet of Things (IIoT) bridges this gap by employing wireless connectivity and IP networking. In order for wireless networks to meet the strict requirements of the industrial domain, the Time Slotted Channel Hopping (TSCH) MAC is often employed. The properties of a TSCH network are defined by the schedule, which dictates transmission opportunities for all nodes. We survey the literature for these schedulers, describe and organize them according to their operation: Centralized, Collaborative, Autonomous, Hybrid, and Static. For each category and the field as a whole, we provide a holistic view and describe historical trends, highlight key developments, and identify trends, such as the attention towards autonomous mechanisms. Each of the 76 schedulers is analyzed into their common components to allow for comparison between schedulers and a deeper understanding of functionality and key properties. This reveals trends such as increasing complexity and the utilization of centralized principles in several collaborative schedulers. Further, each scheduler is evaluated qualitatively to identify its objectives. Altogether this allows us to point out challenges in existing work and identify areas for future research, including fault tolerance, scalability, non-convergecast traffic patterns, and hybrid scheduling strategies.

2020 ◽  
Author(s):  
Karthik Muthineni

The new industrial revolution Industry 4.0, connecting manufacturing process with digital technologies that can communicate, analyze, and use information for intelligent decision making includes Industrial Internet of Things (IIoT) to help manufactures and consumers for efficient controlling and monitoring. This work presents the design and implementation of an IIoT ecosystem for smart factories. The design is based on Siemens Simatic IoT2040, an intelligent industrial gateway that is connected to modbus sensors publishing data onto Network Platform for Internet of Everything (NETPIE). The design demonstrates the capabilities of Simatic IoT2040 by taking Python, Node-Red, and Mosca into account that works simultaneously on the device.


2021 ◽  
pp. 204388692098158
Author(s):  
Dipankar Chakrabarti ◽  
Rohit Kumar ◽  
Soumya Sarkar ◽  
Arindam Mukherjee

Industrial Internet of Things emerged as one of the major technologies enabling Industry 4.0 for industries. Multiple start-ups started working in the Industrial Internet of Things field to support this new industrial revolution. Distronix, one such Industrial Internet of Things start-up of India, started operations in 2014, when companies were not even aware of Industrial Internet of Things. Distronix started executing fixed-fee projects for implementation of Industrial Internet of Things. They also started manufacturing sensors to support large customers end-to-end in their Industry 4.0 journey. With the advent of public cloud, companies started demanding pay-per-use model for the solution Distronix provided. This posed a major challenge to Distronix as they had developed technology skills focusing fixed-fee customized project delivery for their clients. The situation demanded that they change their business model from individual project delivery to creation of product sand-box with pre-registered sensors and pre-defined visualization layer to support use cases for Industrial Internet of Things implementation in multiple industry sectors. It forced Rohit Sarkar, the 26 years old entrepreneur and owner of Distronix, to upgrade capabilities of his employees and transform the business model to support pay-per-use economy popularized by public cloud providers. The case discusses the challenges Rohit faced to revamp their business model in such an emerging technology field, like, to develop new skills of the technical people to support such novel initiative, reorienting sales people towards pay as use model, developing new concept of plug and play modular product, devising innovative pricing, better alliance strategy and finding out a super early adopter.


2020 ◽  
Author(s):  
Nugroho Ridhwan ◽  
Edi Purwanto

The purpose of this article is to build a conceptual framework based on literature review that will be tested in future research related to Digital Business. The results of the literature review allow for the construction of hypotheses into a conceptual framework. Furthermore, the study assesses the influence of performance expectations, efforts expectations and social influence on behavioral intention and usage behavior by modifying Hofstede’s cultural dimensions. The conceptual framework will be tested among Industrial Internet of Things (IIoT) users for future research in Indonesia. Keywords: performance expectancy, effort expectancy, social influence, behavioral intention, use behavior, UTAUT, Hofstede’s cultural dimensions, Industrial IoT


2021 ◽  
Vol 11 (22) ◽  
pp. 10996
Author(s):  
Jongbeom Lim

As Internet of Things (IoT) and Industrial Internet of Things (IIoT) devices are becoming increasingly popular in the era of the Fourth Industrial Revolution, the orchestration and management of numerous fog devices encounter a scalability problem. In fog computing environments, to embrace various types of computation, cloud virtualization technology is widely used. With virtualization technology, IoT and IIoT tasks can be run on virtual machines or containers, which are able to migrate from one machine to another. However, efficient and scalable orchestration of migrations for mobile users and devices in fog computing environments is not an easy task. Naïve or unmanaged migrations may impinge on the reliability of cloud tasks. In this paper, we propose a scalable fog computing orchestration mechanism for reliable cloud task scheduling. The proposed scalable orchestration mechanism considers live migrations of virtual machines and containers for the edge servers to reduce both cloud task failures and suspended time when a device is disconnected due to mobility. The performance evaluation shows that our proposed fog computing orchestration is scalable while preserving the reliability of cloud tasks.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6585
Author(s):  
Claudio Urrea ◽  
David Benítez

The use of Software-Defined Networking (SDN) in the communications of the Industrial Internet of Things (IIoT) demands more comprehensive solutions than those developed to date. The lack of an SDN solution applicable in diverse IIoT scenarios is the problem addressed in this article. The main cause of this problem is the lack of integration of a set of aspects that should be considered in a comprehensive SDN solution. To contribute to the solution of this problem, a review of the literature is conducted in this article, identifying the main requirements for industrial networks nowadays as well as their solutions through SDN. This review indicates that aspects such as security, independence of the network technology used, and network centralized management can be tackled using SDN. All the advantages of this technology can be obtained through the implementation of the same solution, considering a set of aspects proposed by the authors for the implementation of SDNs in IIoT networks. Additionally, after analyzing the main features and advantages of several architectures proposed in the literature, an architecture with distributed network control is proposed for all SDN network scenarios in IIoT. This architecture can be adapted through the inclusion of other necessary elements in specific scenarios. The distributed network control feature is relevant here, as it prevents a single fault-point for an entire industrial network, in exchange for adding some complexity to the network. Finally, the first ideas for the selection of an SDN controller suitable for IIoT scenarios are included, as this is the core element in the proposed architecture. The initial proposal includes the identification of six controllers, which correspond to different types of control planes, and ten characteristics are defined for selecting the most suitable controller through the Analytic Hierarchy Process (AHP) method. The analysis and proposal of different fundamental aspects for the implementation of SDNs in IIoT in this article contribute to the development of a comprehensive solution that is not focused on the characteristics of a specific scenario and would, therefore, be applicable in limited situations.


Author(s):  
Petar Radanliev ◽  
David De Roure ◽  
Jason R.C. Nurse ◽  
Razvan Nicolescu ◽  
Michael Huth ◽  
...  

The world is currently experiencing the fourth industrial revolution driven by the newest wave of digitisation in the manufacturing sector. The term Industry 4.0 (I4.0) represents at the same time: a paradigm shift in industrial production, a generic designation for sets of strategic initiatives to boost national industries, a technical term to relate to new emerging business assets, processes and services, and a brand to mark a very particular historical and social period. I4.0 is also referred to as Industrie 4.0 the New Industrial France, the Industrial Internet, the Fourth Industrial Revolution and the digital economy. These terms are used interchangeably in this text. The aim of this article is to discuss major developments in this space in relation to the integration of new developments of IoT and cyber physical systems in the digital economy, to better understand cyber risks and economic value and risk impact. The objective of the paper is to map the current evolution and its associated cyber risks for the digital economy sector and to discuss the future developments in the Industrial Internet of Things and Industry 4.0.


2020 ◽  
Vol 05 (01) ◽  
pp. 33-163 ◽  
Author(s):  
Yong Chen

Industrial information integration engineering (IIIE) is a set of foundational concepts and techniques that facilitate the industrial information integration process. In recent years, many applications of the integration between Internet of Things (IoT) and IIIE have become available, including industrial Internet of Things (IIoT), cyber-physical systems, smart grids, and smart manufacturing. In order to investigate the latest achievements of studies on IIIE, this paper reviews literatures from 2016 to 2019 in IEEEXplore and Web of Science. Altogether, 970 papers related to IIIE are grouped into 27 research categories and reviewed. The results present up-to-date development of IIIE and provide directions for future research on IIIE.


2019 ◽  
Vol 9 (21) ◽  
pp. 4576 ◽  
Author(s):  
Sara Nieves Matheu García ◽  
Alejandro Molina Zarca ◽  
José Luis Hernández-Ramos ◽  
Jorge Bernal Bernabé ◽  
Antonio Skarmeta Gómez

The fourth industrial revolution is being mainly driven by the integration of Internet of Things (IoT) technologies to support the development lifecycle of systems and products. Despite the well-known advantages for the industry, an increasingly pervasive industrial ecosystem could make such devices an attractive target for potential attackers. Recently, the Manufacturer Usage Description (MUD) standard enables manufacturers to specify the intended use of their devices, thereby restricting the attack surface of a certain system. In this direction, we propose a mechanism to manage securely the obtaining and enforcement of MUD policies through the use of a Software-Defined Network (SDN) architecture. We analyze the applicability and advantages of the use of MUD in industrial environments based on our proposed solution, and provide an exhaustive performance evaluation of the required processes.


Author(s):  
Muhammad Rusyadi Ramli ◽  
Sanjay Bhardwaj ◽  
Dong-Seong Kim

Reliability is essential in industrial networks. In addition, most of the data from nodes of industrial Internet of Things (IIoT) are generated in real time. Thus, those data are mainly used for the time-sensitive applications. Furthermore, device failures should be considered when modeling reliable fog computing for IIoT. In this paper, we provide fundamental aspects to model reliable fog computing for IIoT. First, existing models of fog computing are compared. Then, the most feasible communication type to achieve a reliable system is determined from model analysis. Interaction modes are elaborated to study the advantages and drawbacks when communication is deployed in fog computing for IIoT, and challenges and solutions for reliable fog computing are discussed.


2021 ◽  
Vol 5 (2) ◽  
pp. 49-58
Author(s):  
Kremena Marinova-Kostova ◽  
Ivaylo Kostov

Introduction. Industry 4.0 is a concept that is considered a new phase in the Industrial Revolution, closely related to the application of information technologies and the digital transformation of manufacturing. The main purpose is to be created a more holistic and more connected ecosystem, focused on supply chain management in industrial companies. Implementation of solutions in Industry 4.0 is mostly related to the concept of the Internet of Things (IoT). Mass deployment of this type of technology in industrial enterprises is the basis of the so-called Industrial Internet of Things (IIoT). Achieving interoperability in the IIoT requires the combination of two technologies: the Internet of Things and the Internet of People. Aim and tasks. This article describes the implementation of the concept of the Internet of Things in industrial enterprises, as a key technology factor for developing Industry 4.0. Results. A brief overview of the evolution of industrial production - from the beginning of the Industrial Revolution to the emergence of Industry 4.0 is made. The main principles for implementing Industry 4.0 solutions ensure that the entire production process is computerized. Industry 4.0 solutions are mostly associated with the concept of the Internet of Things (IoT) whose definition and essence are obtained in this article. Based on the various concepts of the IoT are presented solutions that can be used in the industry, namely: in consumer devices in technology used in public organizations in infrastructure applications in industrial applications, also called the Industrial Internet of Things (IIoT). Therefore, we can say that there is a significant potential for improving production processes as regards: optimization of operations, forecasting equipment support, inventory optimization, improving workers' security, shipping chain optimization, etc. Conclusions. The application of the Internet of Things in enterprises is an important and decisive step in the process of their digital transformation and transition to Industry 4.0. The interaction between humans and machines, carried out through Internet technologies, leads to the emergence of the Internet of Everything, which will be a basic concept in industrial production in the coming years. However, the role of man in the production process should not be completely eliminated, but solutions should be sought that support and intellectualize his work.


Sign in / Sign up

Export Citation Format

Share Document