Reliable and Energy Efficient Routing Protocol for Under Water Sensor Networks

Author(s):  
Fatima Al-Shihri ◽  
Mohammed Arafah

The authors proposed a Reliable and energy efficient Routing Protocol (RRP) for underwater sensor network, integrating the desired features of the Directional Flooding based Routing (DFR) and Vector Based Void Avoidance (VBVA) protocols. The new algorithm considers reliability and takes into consideration the residual energy for each node before choosing the forwarding node. RRP relies on a packet flooding technique to increase reliability. However, to prevent a packet from flooding to the whole network, they control the number of nodes forwarding a packet by measuring a link quality between nodes in a hop by hop. To mitigate the effect of the inherent void problem, the authors consider residual energy, link quality, and distance from destination node to choose a reliable path to forward packet to destination. The authors observe that RRP protocol has better performance in terms of the packet delivery ratio than the DFR protocol due to the void avoidance technique.

2020 ◽  
Vol 26 (11) ◽  
pp. 1366-1381
Author(s):  
Sathishkumar Natesan ◽  
Rajakumar Krishnan

The Routing Protocol for Low Power and Lossy Networks (RPL) is operated by gadgets comprised of many devices of embedded type with limited energy, memory as well as resources that do their process. The improvements in the life of the network and energy conservation are the key challenging features in Low Power and Lossy Networks (LLN). Obviously, the LLN has a key strategic part in routing. The Internet of Things (IoT) device is expected to make the apt choice. In LLN, the poor routing choice leads to traffic congestion, reduction in power as well as packet loss ratio. The task in the proposal analyzes Delay (D), Load (L) and Battery Discharge Index (BDI) pivoted Energy Efficient Composite Metric Routing (EECMR) protocol for LLN. The performance of the work in the proposal is evaluated by the COOJA simulator. It outperforms with respect to Network Lifetime (NL), Delay as well as Packet Delivery Ratio (PDR) contrasted to the routing metrics like Traffic Load (TL), Link Quality (LQ), Residual Energy (RE), RE-Battery Discharge Index (RE-BDI) and Hop Count (HC).


2013 ◽  
Vol 787 ◽  
pp. 1050-1055 ◽  
Author(s):  
Zhi Gui Lin ◽  
Hui Qi Zhang ◽  
Xu Yang Wang ◽  
Fang Qin Yao ◽  
Zhen Xing Chen

To the disadvantages, such as high energy consumption and the energy consumption imbalance, we proposed an energy-efficient routing protocol on mobile sink (MSEERP) in this paper. In the MSEERP, the network is divided into several square virtual grids based on GAF, each grid is called a cluster, and the cluster head election method of GAF is improved. In addition, the MSEERP introduces a mobile sink in the network, the sink radios in limited number of hops and uses control moving strategy, namely the sink does not collect the information until it moves to a cluster with highest residual energy. We applied NS2 to evaluate its performance and analyze the simulation results by the energy model. Simulation results show that the MSEERP balances the energy consumption of the network, saves nodes energy and extends the network lifetime.


2022 ◽  
Vol 6 (1) ◽  
pp. 31-42
Author(s):  
Zainab Alansari ◽  
Mohammed Siddique ◽  
Mohammed Waleed Ashour

Wireless sensor networks (WSNs) are set of sensor nodes to monitor and detect transmitted data to the sink. WSNs face significant challenges in terms of node energy availability, which may impact network sustainability. As a result, developing protocols and algorithms that make the best use of limited resources, particularly energy resources, is critical issues for designing WSNs. Routing algorithms, for example, are unique algorithms as they have a direct and effective relationship with lifetime of network and energy. The available routing protocols employ single-hop data transmission to the sink and clustering per round. In this paper, a Fuzzy Clustering and Energy Efficient Routing Protocol (FCERP) that lower the WSNs energy consuming and increase the lifetime of network is proposed. FCERP introduces a new cluster-based fuzzy routing protocol capable of utilizing clustering and multiple hop routing features concurrently using a threshold limit. A novel aspect of this research is that it avoids clustering per round while considering using fixed threshold and adapts multi-hop routing by predicting the best intermediary node for clustering and the sink. Some Fuzzy factors such as residual energy, neighbors amount, and distance to sink considered when deciding which intermediary node to use.


2019 ◽  
Vol 8 (4) ◽  
pp. 5474-5480

In Mobile Ad Hoc Network (MANET), forwarding probability should consider neighbour density, link quality and residual energy of the forwarding nodes. Also, redundant broadcasting by checking the inter-arrival times should be considered. In this paper, we propose to design a adaptive broadcast routing protocol using Fuzzy logic system. In this protocol, a set of forwarding nodes are selected based on the residual energy, coverage probability and channel condition. The rebroadcasting or forwarding probability is adaptively adjusted based on the 1-hop neighbour density and relative mobility of neighbours using the fuzzy logic system. Then the selected forwarding nodes forward the route request packets with the probability given by forwarding probability. Before forwarding the packets, the number of redundant packets exceeding a threshold value, are removed by checking successful status of delivered packets. By simulation results, we show that ABRP minimizes the delay and forwarding ratio by increasing the packet delivery ratio and average residual energy.


Author(s):  
Mukhtiar Ahmed ◽  
Mazleena Salleh ◽  
M. Ibrahim Channa ◽  
Mohd Foad Rohani

Underwater Wireless Sensor Networks (UWSNs) is interesting area for researchers.To extract the information from seabed to water surface the the majority numbers of routing protocols has been introduced. The design of routing protocols faces many challenges like deployment of sensor nodes, controlling of node mobility, development of efficient route for data forwarding, prolong the battery power of the sensor nodes, and removal of void nodes from active data forwarding paths. This research article focuses the design of the Reliable Multipath Energy Efficient Routing (RMEER) which develops the efficient route between sensor nodes, and prolongs the battery life of the nodes. RMEER is a scalable and robust protocol which utilizes the powerful fixed courier nodes in order to enhance the network throughput, data delivery ratio, network lifetime and reduces the end-to-end delay. RMEER is also an energy efficient routing protocol for saving the energy level of the nodes. We have used the NS2.30 simulator with AquaSim package for performance analysis of RMEER.We observed that the simulation performance of RMEER is better than D-DBR protocol.


The wireless body area network is one of effective wearable devices that have been used in medical applications for collecting patient information to providing the treatment incorrect time for avoiding seriousness. The collected data’s such as blood pressure, air flow, temperature, electromagnetic information is transmitted to the health care center via the wireless technology, which reduces the difficulties also helps to provide the immediate treatment. During the information transmission, the main issues are Quality of Service (QoS), low packet delivery, high energy consumption and end to end delay. So, in this paper introduces the Fireflies Ant Optimized, Reliable Quality Awareness, Energy Efficient Routing Protocol ((FAORQEER) for maintaining the quality of the recorded medical data. The network examines the optimal path by using the characteristics of fireflies and the network life time and energy of the network is managed by introducing an energy efficient method. The process then evaluates efficiency with test results about energy consumption, packet delivery ratio, end to end delay and QoS metric associated constraints.


2011 ◽  
pp. 270-277
Author(s):  
N. Sumathi ◽  
Antony Selvadoss Thanamani

In mobile adhoc networks, node has a finite and decreasing energy. Energy saving mechanism is important for the efficient operation of the battery powered network. When a node is transmitting a packet, all the neighboring nodes overhear. Overhearing improves routing efficiency but consumes more energy. Overhearing is caused by the fact that when a unicast transmission is carried out in a node’s immediate neighborhood, it does not have any mechanism for not to receive that packet. Energy consumption during overhearing is same as that during reception. Goal of this work is to develop an energy conserving mechanism due to overhearing. To minimize energy, probability method is applied to randomly select number of overhearing nodes. This probability based overhearing is incorporated into log based pipelined ABM (Available Bandwidth Measurement) and integrated with AOMDV routing protocol. This proposed approach is implemented in NS2 simulator. Simulation results are presented to demonstrate the performance metrics such as throughput, packet delivery ratio, end-end latency, routing overhead, energy and bandwidth consumption of the network.


Author(s):  
Jayashree Agarkhed ◽  
Vijayalaxmi Kadrolli ◽  
Siddarama R. Patil

This paper presents a fuzzy logic-based, service differentiated, QoS aware routing protocol (FMSR) offering multipath routing for WSNs, with the purpose of providing a service differentiated path meant for communication between nodes, based on actual requirements. The proposed protocol initially forms a cluster by fuzzy c-means. Next, the building of a routing follows, so as to establish multiple paths between nodes through the modified QoS k-nearest neighborhood, based on different QoS constraints and on optimum shortest paths. If one node in the path fails due to lack of residual energy, bandwidth, packet loss, delay, an alternate path leading through another neighborhood node is selected for communication. Simulation results show that the proposed protocol performs better in terms of packet delivery ratio, delay, packet drop ratio and throughput compared to other existing routing protocols.


Sign in / Sign up

Export Citation Format

Share Document