scholarly journals Effect of Exercise Intensity on Cell-Mediated Immunity

Sports ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 8
Author(s):  
Katsuhiko Suzuki ◽  
Harumi Hayashida

Moderate-intensity exercise is considered to enhance immune function and to be useful for preventing acute upper respiratory infections and similar conditions. Many people practice low-intensity short-duration exercise with the expectation of a beneficial effect on immunocompetency. However, it is difficult to affirm the existence of definite evidence of such a benefit. In this article, we discuss the effects of low-intensity short-duration exercise on cell-mediated immunity, and contrast them to the effects of high-intensity and long-duration exercise. Whereas high-intensity exercise induces inflammation and reduces cell-mediated immune system function, low-intensity exercise does not appear to have a large effect on either inflammation or cell-mediated immune function. Low-intensity exercises such as walking and yoga, which are helpful to relieve stress, cannot be considered as harmful to the immune system. Although yoga was shown to impose fewer restrictions on breathing and physical strain, the evidence that yoga enhances cell-mediated immunity remains insufficient. Therefore, further studies are needed to examine the exercise mode that may be most effective for improvement of immune functions.

2015 ◽  
Vol 4 (1) ◽  
pp. 118-125
Author(s):  
Jeffrey A. Woods ◽  
Brandt D. Pence

Exercise immunology is a relatively new discipline in the exercise sciences that seeks to understand how exercise affects the immune system and susceptibility to infectious and chronic diseases. This brief review will focus on three major observations that have driven the field to date including: (1) acute exercise-induced leukocytosis, (2) the observation that intense, prolonged exercise results in upper respiratory tract symptoms, and (3) the paradoxical effect of acute and chronic exercise on inflammation. This framework will be used to examine the mechanisms and implications behind these seminal observations. Data generally support the conclusion that moderate intensity exercise enhances immune function, whereas prolonged, intense exercise diminishes immune function.


2020 ◽  
Vol 23 (5) ◽  
pp. 584-603
Author(s):  
Amir Hossein Ahmadi Hekmatikar ◽  
◽  
Mahdieh Molanouri Shamsi ◽  

Background and Aim: Coronavirus Disease 2019 (COVID-19), as a viral disease, has increasingly highlighted the need for lifelong exercise due to its immunological and physiological effects is necessary on health. In this review study, while examining the effects of moderate-intensity exercise on the physiological and immunological responses associated with COVID-19, appropriate exercise patterns during the COVID-19 pandemic are presented. Methods & Materials: In this study, the search was conducted in Web of Science, Scopus, ISC, PubMed, Google Scholar, MagIran, and Noor databases on related articles using the following keywords: coronavirus, COVID-19, exercise and coronavirus, exercise and immune system, high-intensity exercise and immune system. Ethical Considerations: All ethical principles in writing this article have been observed according to the instructions of the National Ethics Committee and the COPE regulations. Results: Moderate-intensity exercise can help boost the function of the immune system. On the other hand, high-intensity exercise can have negative effects on the immune system, which can be a bad strategy increasing the risk of infectious diseases. Results Moderate-intensity exercise can help boost the function of the immune system. On the other hand, high-intensity exercise can have negative effects on the immune system, which can be a bad strategy increasing the risk of infectious diseases. Conclusion: Due to the onset of the second wave of COVID-19 in the world, it is recommended to continue to exercise at home observing the hygiene rules (maintaining humidity and disinfecting environmental surfaces) and using appropriate intensity and duration.


2016 ◽  
Vol 51 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Mike Smith ◽  
Jason Tallis ◽  
Amanda Miller ◽  
Neil D. Clarke ◽  
Lucas Guimarães-Ferreira ◽  
...  

Abstract This study examined the effect of short duration, moderate and high-intensity exercise on a Go/NoGo task. Fifteen, habitually active (9 females and 6 males aged 28 ± 5 years) agreed to participate in the study and cognitive performance was measured in three sessions lasting 10 min each, performed at three different exercise intensities: rest, moderate and high. Results indicated significant exercise intensity main effects for reaction time (RT) (p = 0.01), the omission error rate (p = 0.027) and the decision error rate (p = 0.011), with significantly longer RTs during high intensity exercise compared to moderate intensity exercise (p = 0.039) and rest (p = 0.023). Mean ± SE of RT (ms) was 395.8 ± 9.1, 396.3 ± 9.1 and 433.5 ± 16.1 for rest, moderate and high intensity exercise, respectively. This pattern was replicated for the error rate with a significantly higher omission error and decision error rate during high intensity exercise compared to moderate intensity exercise (p = 0.003) and rest (p = 0.001). Mean ± SE of omission errors (%) was 0.88 ± 0.23, 0.8 ± 0.23 and 1.8 ± 0.46% for rest, moderate and high intensity exercise, respectively. Likewise, mean ± SE of decision errors (%) was 0.73 ± 0.24, 0.73 ± 0.21 and 1.8 ± 0.31 for rest, moderate and high intensity exercise, respectively. The present study’s results suggest that 10 min workout at high intensity impairs RT performances in habitually active adults compared to rest or moderate intensity exercise.


2018 ◽  
Vol 243 (14) ◽  
pp. 1153-1160 ◽  
Author(s):  
Alexandra L Rodriguez ◽  
Michael Whitehurst ◽  
Brandon G Fico ◽  
Katelyn M Dodge ◽  
Peter J Ferrandi ◽  
...  

Obesity may attenuate the expression of brain-derived neurotrophic factor (BDNF), thereby increasing the risk of cognitive dysfunction. High-intensity interval exercise (HIIE) has been shown to be as or more effective than continuous moderate-intensity exercise (CME) in promoting the expression of BDNF in normal-weight individuals. Therefore, the primary purpose of this study was to examine whether or not acute HIIE could be utilized as a practical model to explore the BDNF response in obese versus normal-weight subjects when compared to acute CME. The potential relationship of exercise-induced BDNF with blood lactate and cortisol was also examined. Twelve male subjects (six obese and six normal-weight) participated in a counterbalanced and caloric equated experiment: HIIE (30 min, 4 intervals of 4 min at 80%–90% of VO2max with 3 min of active recovery at 50–60% VO2max) and CME (38 min at 50%–60% VO2max). Blood samples were collected prior to, immediately following exercise, and 1 h into recovery for measurements of serum BDNF, blood lactate, and plasma cortisol. Our results showed that the BDNF response to acute HIIE was greater than CME in obese subjects when compared to normal-weight subjects. Similarly, although acute HIIE induced greater blood lactate and plasma cortisol levels than CME, obese subjects produced less blood lactate, but no difference in cortisol than normal-weight subjects. These findings suggest that acute HIIE may be a more effective protocol to upregulate BDNF expression in an obese population, independent of increased lactate and cortisol levels. Impact statement High-intensity interval exercise (HIIE) has been shown to be a time-efficient exercise strategy that provides similar or superior physiological benefits as traditional continuous moderate-intensity exercise (CME). Our previous study demonstrated an equivalent elevation on the BDNF response in both obese and normal-weight individuals following 30 min of acute CME. To discover a time-efficient exercise strategy to improve brain health in an obese population, the present study found that obese individuals elicit a greater level of BDNF following acute HIIE versus CME than normal-weight individuals. These findings indicate that acute HIIE may be an effective strategy to upregulate BDNF expression in obese individuals.


2019 ◽  
Vol 10 ◽  
Author(s):  
Edvard H. Sagelv ◽  
Tord Hammer ◽  
Tommy Hamsund ◽  
Kamilla Rognmo ◽  
Svein Arne Pettersen ◽  
...  

1999 ◽  
Vol 276 (5) ◽  
pp. E828-E835 ◽  
Author(s):  
Jeffrey F. Horowitz ◽  
Ricardo Mora-Rodriguez ◽  
Lauri O. Byerley ◽  
Edward F. Coyle

This study determined the effect of carbohydrate ingestion during exercise on the lipolytic rate, glucose disappearance from plasma (Rd Glc), and fat oxidation. Six moderately trained men cycled for 2 h on four separate occasions. During two trials, they were fed a high-glycemic carbohydrate meal during exercise at 30 min (0.8 g/kg), 60 min (0.4 g/kg), and 90 min (0.4 g/kg); once during low-intensity exercise [25% peak oxygen consumption (V˙o 2 peak)] and once during moderate-intensity exercise (68%V˙o 2 peak). During two additional trials, the subjects remained fasted (12–14 h) throughout exercise at each intensity. After 55 min of low-intensity exercise in fed subjects, hyperglycemia (30% increase) and a threefold elevation in plasma insulin concentration ( P < 0.05) were associated with a 22% suppression of lipolysis compared with when subjects were fasted (5.2 ± 0.5 vs. 6.7 ± 1.2 μmol ⋅ kg−1 ⋅ min−1, P < 0.05), but fat oxidation was not different from fasted levels at this time. Fat oxidation when subjects were fed carbohydrate was not reduced below fasting levels until 80–90 min of exercise, and lipolysis was in excess of fat oxidation at this time. The reduction in fat oxidation corresponded in time with the increase in Rd Glc. During moderate-intensity exercise, the very small elevation in plasma insulin concentration (∼3 μU/ml; P < 0.05) during the second hour of exercise when subjects were fed vs. when they were fasted slightly attenuated lipolysis ( P < 0.05) but did not increase Rd Glc or suppress fat oxidation. These findings indicate that despite a suppression of lipolysis after carbohydrate ingestion during exercise, the lipolytic rate remained in excess and thus did not limit fat oxidation. Under these conditions, a reduction in fat oxidation was associated in time with an increase in glucose uptake.


2015 ◽  
Vol 9 ◽  
pp. CMC.S26230 ◽  
Author(s):  
Itamar Levinger ◽  
Christopher S. Shaw ◽  
Nigel K. Stepto ◽  
Samantha Cassar ◽  
Andrew J. McAinch ◽  
...  

High-intensity interval exercise (HIIE) has gained popularity in recent years for patients with cardiovascular and metabolic diseases. Despite potential benefits, concerns remain about the safety of the acute response (during and/or within 24 hours postexercise) to a single session of HIIE for these cohorts. Therefore, the aim of this study was to perform a systematic review to evaluate the safety of acute HIIE for people with cardiometabolic diseases. Electronic databases were searched for studies published prior to January 2015, which reported the acute responses of patients with cardiometabolic diseases to HIIE (≥80% peak power output or ≥85% peak aerobic power, VO2peak). Eleven studies met the inclusion criteria (n = 156; clinically stable, aged 27-66 years), with 13 adverse responses reported (~8% of individuals). The rate of adverse responses is somewhat higher compared to the previously reported risk during moderate-intensity exercise. Caution must be taken when prescribing HIIE to patients with cardiometabolic disease. Patients who wish to perform HIIE should be clinically stable, have had recent exposure to at least regular moderate-intensity exercise, and have appropriate supervision and monitoring during and after the exercise session.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Katrin A Dias ◽  
James P Macnamara ◽  
Christopher M Hearon ◽  
Mitchel Samels ◽  
Aslan Turer ◽  
...  

Introduction: Patients with hypertrophic cardiomyopathy (HCM) are excluded from high intensity activities due to perceived fear of sudden cardiac death. Observational data from athletes with HCM suggest that engaging in high intensity exercise (HIE) may be safe and is associated with higher cardiorespiratory fitness. Whether HIE can safely elicit a superior increase in fitness compared to moderate intensity exercise in patients with HCM is unclear. Methods: Nine HCM patients (49 ± 7 years, 3 female) were assessed for maximal oxygen uptake (VO 2 max, Douglas Bag method), cardiac output (Q c , acetylene rebreathing), and peripheral oxygen extraction (av-O 2 diff, Fick equation) before randomization and after 5 months of MIE or HIE training. Patients completed 3-4 sessions of MIE each week, while the HIE group also incorporated 1-2 supervised high intensity interval training sessions/week from month 3 onwards. Arrhythmias were monitored via pre-existing implantable cardiac defibrillators or implantable loop recorders placed prior to training. Results: Five months of MIE increased absolute VO 2 max by 3% and relative VO 2 max by 4%, while HIE consistently increased absolute VO 2 max by 6% and relative VO 2 max by 5% (Figure). Maximal Q c did not change after MIE but increased in all HIE patients (+1.2L/min, 95% CI -1.4 to 3.9), while maximal av-O 2 diff remained stable in both groups. Training compliance was 84 ± 15% in HIE and 93 ± 11% in MIE. There were no serious exercise-related adverse events in either group though two HIE subjects had arrhythmias at rest: 1) 14-beat run of wide complex tachycardia of uncertain mechanism given underlying conduction disease prior to a training session, and 2) 11 beats of non-sustained ventricular tachycardia prior to post exercise testing. Conclusions: Preliminary findings show that five months of HIE safely and consistently increased cardiorespiratory fitness in patients with HCM, though overall the improvements were comparable to MIE.


2018 ◽  
Vol 43 (12) ◽  
pp. 1233-1238 ◽  
Author(s):  
Aaron L. Slusher ◽  
Michael Whitehurst ◽  
Arun Maharaj ◽  
Katelyn M. Dodge ◽  
Brandon G. Fico ◽  
...  

Pentraxin 3 (PTX3) is mainly synthesized and released by neutrophils to help regulate innate immunity. While plasma PTX3 concentrations are associated with improved glucose metabolism and overall metabolic health, there is evidence that significant elevations in plasma glucose downregulate circulating levels of PTX3. To examine whether this relationship would be altered in response to exercise, this study investigated the kinetics of the plasma glucose and PTX3 responses following high-intensity interval exercise (HIIE) and continuous moderate-intensity exercise (CMIE). It was hypothesized that the increased concentrations of plasma glucose following HIIE compared with CMIE would be associated with an attenuated plasma PTX3 response. Eight healthy male subjects participated in both HIIE and CMIE protocols administered as a randomized, counterbalanced design. Linear mixed models for repeated measures revealed that the overall plasma glucose response was greater following HIIE compared with CMIE (protocol × time effect: p = 0.037). Although the plasma PTX3 response was higher only at 19 min into HIIE compared with CMIE (protocol × time effect: p = 0.013), no relationships were observed between plasma glucose and PTX3 either at baseline or in response to both exercise protocols, as indicated by the area under the curve “with respect to increase” analysis. Our results indicate that exercise-mediated plasma PTX3 concentrations are independent of the plasma glucose response. In addition, the present study suggests that the neutrophil-mediated innate immune response, as indicated by plasma PTX3 response, may be activated earlier during HIIE compared with CMIE.


Sign in / Sign up

Export Citation Format

Share Document