scholarly journals The effect of exercise intensity on cognitive performance during short duration treadmill running

2016 ◽  
Vol 51 (1) ◽  
pp. 27-35 ◽  
Author(s):  
Mike Smith ◽  
Jason Tallis ◽  
Amanda Miller ◽  
Neil D. Clarke ◽  
Lucas Guimarães-Ferreira ◽  
...  

Abstract This study examined the effect of short duration, moderate and high-intensity exercise on a Go/NoGo task. Fifteen, habitually active (9 females and 6 males aged 28 ± 5 years) agreed to participate in the study and cognitive performance was measured in three sessions lasting 10 min each, performed at three different exercise intensities: rest, moderate and high. Results indicated significant exercise intensity main effects for reaction time (RT) (p = 0.01), the omission error rate (p = 0.027) and the decision error rate (p = 0.011), with significantly longer RTs during high intensity exercise compared to moderate intensity exercise (p = 0.039) and rest (p = 0.023). Mean ± SE of RT (ms) was 395.8 ± 9.1, 396.3 ± 9.1 and 433.5 ± 16.1 for rest, moderate and high intensity exercise, respectively. This pattern was replicated for the error rate with a significantly higher omission error and decision error rate during high intensity exercise compared to moderate intensity exercise (p = 0.003) and rest (p = 0.001). Mean ± SE of omission errors (%) was 0.88 ± 0.23, 0.8 ± 0.23 and 1.8 ± 0.46% for rest, moderate and high intensity exercise, respectively. Likewise, mean ± SE of decision errors (%) was 0.73 ± 0.24, 0.73 ± 0.21 and 1.8 ± 0.31 for rest, moderate and high intensity exercise, respectively. The present study’s results suggest that 10 min workout at high intensity impairs RT performances in habitually active adults compared to rest or moderate intensity exercise.

2019 ◽  
Vol 126 (4) ◽  
pp. 1150-1159 ◽  
Author(s):  
Nicole T. Vargas ◽  
Christopher L. Chapman ◽  
Blair D. Johnson ◽  
Rob Gathercole ◽  
Zachary J. Schlader

We tested the hypothesis that thermal behavior is greater during and after high- compared with moderate-intensity exercise. In a 27°C, 20% relative humidity environment, 20 participants (10 women, 10 men) cycled for 30 min at moderate [53% (SD 6) peak oxygen uptake (V̇o2peak) or high [78% (SD 6) V̇o2peak] intensity, followed by 120 min of recovery. Mean skin and core temperatures and mean skin wettedness were recorded continuously. Participants maintained thermally comfortable neck temperatures with a custom-made neck device. Neck device temperature provided an index of thermal behavior. The weighted average of mean skin and core temperatures and mean skin wettedness provided an indication of the afferent stimulus to thermally behave. Mean skin and core temperatures were greater at end-exercise in high intensity ( P < 0.01). Core temperature remained elevated in high intensity until 70 min of recovery ( P = 0.03). Mean skin wettedness and the afferent stimulus were greater at 10–20 min of exercise in high intensity ( P ≤ 0.03) and remained elevated until 60 min of recovery ( P < 0.01). Neck device temperature was lower during exercise in high versus moderate intensity ( P ≤ 0.02). There was a strong relation between the afferent stimulus and neck device temperature during exercise (high: R2 = 0.82, P < 0.01; moderate: R2 = 0.95, P < 0.01) and recovery (high: R2 = 0.97, P < 0.01; moderate: R2 = 0.93, P < 0.01). During exercise, slope ( P = 0.49) and y-intercept ( P = 0.91) did not differ between intensities. In contrast, slope was steeper ( P < 0.01) and y-intercept was higher ( P < 0.01) during recovery from high-intensity exercise. Thermal behavior is greater during high-intensity exercise because of the greater stimulus to behave. The withdrawal of thermal behavior is augmented after high-intensity exercise. NEW & NOTEWORTHY This is the first study to determine the effects of exercise intensity on thermal behavior. We show that exercise intensity does not independently modulate thermal behavior during exercise but is dependent on the magnitude of afferent stimuli. In contrast, the withdrawal of thermal behavior after high-intensity exercise is augmented. This may be a consequence of an attenuated perceptual response to afferent stimuli, which may be due to processes underlying postexercise hypoalgesia.


2000 ◽  
Vol 88 (5) ◽  
pp. 1707-1714 ◽  
Author(s):  
J. A. Romijn ◽  
E. F. Coyle ◽  
L. S. Sidossis ◽  
J. Rosenblatt ◽  
R. R. Wolfe

We have studied eight endurance-trained women at rest and during exercise at 25, 65, and 85% of maximal oxygen uptake. The rate of appearance (Ra) of free fatty acids (FFA) was determined by infusion of [2H2]palmitate, and fat oxidation rates were determined by indirect calorimetry. Glucose kinetics were assessed with [6,6-2H2]glucose. Glucose Ra increased in relation to exercise intensity. In contrast, whereas FFA Ra was significantly increased to the same extent in low- and moderate-intensity exercise, during high-intensity exercise, FFA Ra was reduced compared with the other exercise values. Carbohydrate oxidation increased progressively with exercise intensity, whereas the highest rate of fat oxidation was during exercise at 65% of maximal oxygen uptake. After correction for differences in lean body mass, there were no differences between these results and previously reported data in endurance-trained men studied under the same conditions, except for slight differences in glucose metabolism during low-intensity exercise (Romijn JA, Coyle EF, Sidossis LS, Gastaldelli A, Horowitz JF, Endert E, and Wolfe RR. Am J Physiol Endocrinol Metab 265: E380–E391, 1993). We conclude that the patterns of changes in substrate kinetics during moderate- and high-intensity exercise are similar in trained men and women.


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Katrin A Dias ◽  
James P Macnamara ◽  
Christopher M Hearon ◽  
Mitchel Samels ◽  
Aslan Turer ◽  
...  

Introduction: Patients with hypertrophic cardiomyopathy (HCM) are excluded from high intensity activities due to perceived fear of sudden cardiac death. Observational data from athletes with HCM suggest that engaging in high intensity exercise (HIE) may be safe and is associated with higher cardiorespiratory fitness. Whether HIE can safely elicit a superior increase in fitness compared to moderate intensity exercise in patients with HCM is unclear. Methods: Nine HCM patients (49 ± 7 years, 3 female) were assessed for maximal oxygen uptake (VO 2 max, Douglas Bag method), cardiac output (Q c , acetylene rebreathing), and peripheral oxygen extraction (av-O 2 diff, Fick equation) before randomization and after 5 months of MIE or HIE training. Patients completed 3-4 sessions of MIE each week, while the HIE group also incorporated 1-2 supervised high intensity interval training sessions/week from month 3 onwards. Arrhythmias were monitored via pre-existing implantable cardiac defibrillators or implantable loop recorders placed prior to training. Results: Five months of MIE increased absolute VO 2 max by 3% and relative VO 2 max by 4%, while HIE consistently increased absolute VO 2 max by 6% and relative VO 2 max by 5% (Figure). Maximal Q c did not change after MIE but increased in all HIE patients (+1.2L/min, 95% CI -1.4 to 3.9), while maximal av-O 2 diff remained stable in both groups. Training compliance was 84 ± 15% in HIE and 93 ± 11% in MIE. There were no serious exercise-related adverse events in either group though two HIE subjects had arrhythmias at rest: 1) 14-beat run of wide complex tachycardia of uncertain mechanism given underlying conduction disease prior to a training session, and 2) 11 beats of non-sustained ventricular tachycardia prior to post exercise testing. Conclusions: Preliminary findings show that five months of HIE safely and consistently increased cardiorespiratory fitness in patients with HCM, though overall the improvements were comparable to MIE.


2020 ◽  
Vol 106 (1) ◽  
pp. e83-e93
Author(s):  
Vinutha B Shetty ◽  
Paul A Fournier ◽  
Nirubasini Paramalingam ◽  
Wayne Soon ◽  
Heather C Roby ◽  
...  

Abstract Context Under basal insulin levels, there is an inverted U relationship between exercise intensity and exogenous glucose requirements to maintain stable blood glucose levels in type 1 diabetes (T1D), with no glucose required for intense exercise (80% V̇O2 peak), implying that high-intensity exercise is not conducive to hypoglycemia. Objective This work aimed to test the hypothesis that a similar inverted U relationship exists under hyperinsulinemic conditions, with high-intensity aerobic exercise not being conducive to hypoglycemia. Methods Nine young adults with T1D (mean ± SD age, 22.6 ± 4.7 years; glycated hemoglobin, 61 ± 14 mmol/mol; body mass index, 24.0 ± 3.3 kg/m2, V̇O2 peak, 36.6 ± 8.0 mL·kg–1 min–1) underwent a hyperinsulinemic-euglycemic clamp to maintain stable glycemia (5-6 mmol·L−1), and exercised for 40 minutes at 4 intensities (35%, 50%, 65%, and 80% V̇O2peak) on separate days following a randomized counterbalanced study design. Main Outcome Measures Glucose infusion rates (GIR) and glucoregulatory hormones levels were measured. Results The GIR (± SEM) to maintain euglycemia was 4.4 ± 0.4 mg·kg–1 min–1 prior to exercise, and increased significantly by 1.8 ± 0.4, 3.0 ± 0.4, 4.2 ± 0.7, and 3.5 ± 0.7 mg·kg–1 min–1 during exercise at 35%, 50%, 65%, and 80% V̇O2 peak, respectively, with no significant differences between the 2 highest exercise intensities (P &gt; .05), despite differences in catecholamine levels (P &lt; .05). During the 2-hour period after exercise at 65% and 80% V̇O2 peak, GIRs did not differ from those during exercise (P &gt; .05). Conclusions Under hyperinsulinemic conditions, the exogenous glucose requirements to maintain stable glycemia during and after exercise increase with exercise intensity then plateau with exercise performed at above moderate intensity ( &gt; 65% V̇O2 peak). High-intensity exercise confers no protection against hypoglycemia.


2021 ◽  
Author(s):  
Xuchang Zhou ◽  
Hong Cao ◽  
Miao Wang ◽  
Jun Zou ◽  
wei wu

Abstract Background The purpose of this study was to explore whether moderate-intensity exercise can alleviate motion-induced post-traumatic osteoarthritis (PTOA) and the expression change of lncRNA H19 during this progression.Methods Twenty-week-old male C57BL/6 mice were randomly divided into five groups: model control group (CM group, n = 6), treadmill model group (M group, n = 6), rehabilitation control group (CK group, n = 6), treadmill model + rehabilitation training group (K group, n = 6) and treadmill model + rest group (J group, n = 6). Paraffin sections were used to observe the pathological changes in the mouse knee joint in each group. A micro-CT was used to scan the knee joint to obtain the morphological indexes of tibial plateau bone. Real-time PCR was used to detect the mRNA levels of inflammatory factors, synthetic and catabolic factors in cartilage. Results After high-intensity exercise for four weeks, the inflammation and catabolism of the mouse knee cartilage were enhanced, and the anabolism was weakened. Further study showed that these results were partially reversed after four-week moderate-intensity training. The results of hematoxylin-eosin staining confirmed this finding. Meanwhile, high-intensity exercise reduced the expression of lncRNA H19 in cartilage, while the expression of lncRNA H19 increased after four weeks of moderate-intensity exercise.Conclusion High-intensity treadmill running can cause injury to the knee cartilage in C57BL/6 mice which leads to PTOA and an decrease of lncRNA H19 expression in cartilage. Moderate-intensity exercise can relieve PTOA and partially reverse lncRNA H19 expression.


Medicine ◽  
2021 ◽  
Vol 100 (31) ◽  
pp. e25368
Author(s):  
Robson F. Borges ◽  
Gaspar R. Chiappa ◽  
Paulo T. Muller ◽  
Alexandra Correa Gervazoni Balbuena de Lima ◽  
Lawrence Patrick Cahalin ◽  
...  

2021 ◽  
Vol 16 (1) ◽  
pp. 16-23
Author(s):  
Vibha Gangwar ◽  
Manish Kumar Verma ◽  
Ritesh Singh Gangwar ◽  
Nitin Ashok John ◽  
Rajani Bala Jasrotia

Background: Sedentary behavior is one of the leading modifiable risk factors for cardiovascular disease and all-cause mortality. Physical exercise exerts beneficial physiological effects on cardiovascular fitness. Different grades of physical exercise have different effects on cardiovascular health. Objective: To compare the effect of moderate and high intensity exercise training on heart rate variability (HRV) in sedentary office workers. Methods: This study was conducted on 40 healthy sedentary volunteers aged between 20-40 years of both the genders. Participants were distributed into two groups of 20 subjects each. Subjects of group I and group II performed moderate intensity and high intensity exercise respectively on bicycle ergometer for 12 weeks. Their 5- minute ECG recording was done by three channel physiograph, and frequency domain indices of HRV and heart rate (HR) were analyzed and compared before and after exercise training. Their blood pressure was also recorded and compared before and after exercise training. Independent sample t-test and paired sample ttest were used for statistical analysis. Results: HF, systolic and diastolic blood pressure reduced significantly after exercise in group II (p=0.015, 0.005, and 0.015 respectively) while HR and LF/HF ratio reduced in both group I and group II (p=0.000 for HR, and 0.034, 0.001 for LF/HF). The decrease in HR was greater after high intensity exercise than moderate intensity exercise (p= 0.025). Conclusion: Parasympathetic activity improves after moderate and high intensity exercise but improvement is more after high intensity exercise training. Therefore, high intensity exercise training is more beneficial than moderate intensity exercise training. J Bngladesh Soc Physiol 2021;16(1): 16-23


2019 ◽  
Vol 30 (1) ◽  
pp. 101-112 ◽  
Author(s):  
Sophie C Andrews ◽  
Dylan Curtin ◽  
Ziarih Hawi ◽  
Jaeger Wongtrakun ◽  
Julie C Stout ◽  
...  

Abstract A single bout of cardiovascular exercise can enhance plasticity in human cortex; however, the intensity required for optimal enhancement is debated. We investigated the effect of exercise intensity on motor cortex synaptic plasticity, using transcranial magnetic stimulation. Twenty healthy adults (Mage = 35.10 ± 13.25 years) completed three sessions. Measures of cortico-motor excitability (CME) and inhibition were obtained before and after a 20-min bout of either high-intensity interval exercise, moderate-intensity continuous exercise, or rest, and again after intermittent theta burst stimulation (iTBS). Results showed that high-intensity interval exercise enhanced iTBS plasticity more than rest, evidenced by increased CME and intracortical facilitation, and reduced intracortical inhibition. In comparison, the effect of moderate-intensity exercise was intermediate between high-intensity exercise and rest. Importantly, analysis of each participant’s plasticity response profile indicated that high-intensity exercise increased the likelihood of a facilitatory response to iTBS. We also established that the brain-derived neurotrophic factor Val66Met polymorphism attenuated plasticity responses following high-intensity exercise. These findings suggest that high-intensity interval exercise should be considered not only when planning exercise interventions designed to enhance neuroplasticity, but also to maximize the therapeutic potential of non-invasive brain stimulation. Additionally, genetic profiling may enhance efficacy of exercise interventions for brain health.


2019 ◽  
Vol 14 (5) ◽  
pp. 734-764 ◽  
Author(s):  
David Moreau ◽  
Edward Chou

High-intensity exercise has recently emerged as a potent alternative to aerobic regimens, with ramifications for health and brain function. As part of this trend, single sessions of intense exercise have been proposed as powerful, noninvasive means for transiently enhancing cognition. However, findings in this field remain mixed, and a thorough synthesis of the evidence is lacking. Here, we synthesized the literature in a meta-analysis of the acute effect of high-intensity exercise on executive function. We included a total of 1,177 participants and 147 effect sizes across 28 studies and found a small facilitating effect ( d = 0.24) of high-intensity exercise on executive function. However, this effect was significant only compared with rest ( d = 0.34); it was not significant when high-intensity exercise was compared with low-to-moderate intensity exercise ( d = 0.07). This suggests that intense and moderate exercise affect executive function in a comparable manner. We tested a number of moderators that together explained a significant proportion of the between-studies variance. Overall, our findings indicate that high-intensity cardiovascular exercise might be a viable alternative for eliciting acute cognitive gains. We discuss the potential of this line of research, identify a number of challenges and limitations it faces, and propose applications to individuals, society, and policies.


Sign in / Sign up

Export Citation Format

Share Document