scholarly journals Optimization of LED Lighting and Quality Evaluation of Romaine Lettuce Grown in An Innovative Indoor Cultivation System

2019 ◽  
Vol 11 (3) ◽  
pp. 841 ◽  
Author(s):  
Danilo Loconsole ◽  
Giacomo Cocetta ◽  
Piero Santoro ◽  
Antonio Ferrante

Sustainability is the most critical point in micro-scale indoor crop systems. It can be improved through the optimization of all of the production factors, such as water, nutrients, and energy. The use of light-emitting diodes (LED) allows the fine regulation of the light intensity and light spectrum to be obtained, with a significant reduction in energy consumption. The objective of this study was the optimization of a LED-based protocol of light management for Romaine lettuce cultivation in a micro-growing environment specifically designed for home cultivation. Four different growing cycles were tested. In each one, the light spectrum was modified by increasing the percentage of red light and decreasing the blue light. This resulted in a change in the light intensity which ranged from 63.2 to 194.54 µmol m−2 s−1. Moreover, the photoperiod was shortened to reduce the energy consumption and, in the last cycle, the effect of the daily alternation of dark and light was tested. The fresh and dry biomass produced were measured and the energy consumed in each cycle was monitored. The quality of lettuce was evaluated by measuring several physiological indexes, including chlorophyll a fluorescence, chlorophyll, sugars, nitrate, lipid peroxidation, carotenoids, and phenolic index. The results obtained showed that the productivity and the quality of lettuce can be positively affected by modulating the light quality and intensity, as well as other cultural practices. At the same time, the estimation of the electrical energy consumption indicated that little changes in the lighting recipe can significantly affect the energetic, environmental, and economic impact of home productions.

HortScience ◽  
2019 ◽  
Vol 54 (5) ◽  
pp. 865-872 ◽  
Author(s):  
Yuyao Kong ◽  
Ajay Nemali ◽  
Cary Mitchell ◽  
Krishna Nemali

High energy-use cost for electric lighting is one of the major issues challenging sustainability of the indoor lettuce-farming industry. Thus, maximizing electrical energy-use efficiency (EUE, g·KWh−1), defined as the ratio of dry matter production (g) to electrical energy consumption (EEC, KWh−1), is crucial during indoor production. Light-emitting diodes (LEDs) are energy efficient and highly suitable for indoor farms. Research on optimal spectral quality of LEDs for lettuce growth is extensive; however, there is limited research examining LED spectral quality effects on EEC and EUE. Photon efficiency, defined as the ratio of light output to electrical energy input (PE, µmol·J−1), generally is used for selection of LED fixtures. Because PE does not account for differences in emitted light spectrum, it is not clear whether light-fixture selection based on PE can maximize EUE in lettuce production. This study comprised two experiments. In Expt. 1, we used four “phosphor-converted” commercial LEDs with different light intensities and spectra to model the effect of light spectral quality on lettuce shoot dry weight (SDW), EEC, and EUE. We also evaluated relations between EUE vs. PE and EUE vs. PER (PE based on red light) for indoor lettuce production. Results indicated that light spectral quality affected SDW, EEC, and EUE in lettuce production. Fitted models indicated that EEC increased linearly with increasing percentage of red-light output and was unaffected by other spectral colors or ratios. However, EUE increased in a curvilinear fashion with an increasing ratio of red to blue (R:B) light and reached a maximum at a ratio of 4.47. Similar to EUE, SDW also responded in a curvilinear fashion to R:B. Results also indicated that EUE correlated poorly with PE but linearly to PER. In Expt. 2, we grew three lettuce varieties under two commercial LED fixtures. They had similar levels of PE but different percentages of red, R:B, and PER values. Regardless of the variety, fixtures with greater percentages of red, R:B, and PER significantly increased EUE. We conclude that red-light quality is an important determinant of EUE and growers should select fixtures based on R:B and high PER in indoor lettuce farming.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 960
Author(s):  
Jenny Manuela Tabbert ◽  
Hartwig Schulz ◽  
Andrea Krähmer

A light-emitting diode (LED) system covering plant-receptive wavebands from ultraviolet to far-red radiation (360 to 760 nm, “white” light spectrum) was investigated for greenhouse productions of Thymus vulgaris L. Biomass yields and amounts of terpenoids were examined, and the lights’ productivity and electrical efficiency were determined. All results were compared to two conventionally used light fixture types (high-pressure sodium lamps (HPS) and fluorescent lights (FL)) under naturally low irradiation conditions during fall and winter in Berlin, Germany. Under LED, development of Thymus vulgaris L. was highly accelerated resulting in distinct fresh yield increases per square meter by 43% and 82.4% compared to HPS and FL, respectively. Dry yields per square meter also increased by 43.1% and 88.6% under LED compared to the HPS and FL lighting systems. While composition of terpenoids remained unaffected, their quantity per gram of leaf dry matter significantly increased under LED and HPS as compared to FL. Further, the power consumption calculations revealed energy savings of 31.3% and 20.1% for LED and FL, respectively, compared to HPS. In conclusion, the implementation of a broad-spectrum LED system has tremendous potential for increasing quantity and quality of Thymus vulgaris L. during naturally insufficient light conditions while significantly reducing energy consumption.


Agronomy ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1996
Author(s):  
Yali Li ◽  
Jie Xiao ◽  
Jiangtao Hu ◽  
Byoung Ryong Jeong

The optimal photoperiod and light quality for runner induction in strawberries ‘Sulhyang’ and ‘Maehyang’ were investigated. Two experiments were carried out in a semi-closed walk-in growth chamber with 25/15 °C day/night temperatures and a light intensity of 250 μmol·m–2·s–1photosynthetic photon flux density (PPFD) provided from white light-emitting diodes (LEDs). In the first experiment, plants were treated with a photoperiod of either 12, 14, 16, 18, 20, or 22 h In the second experiment, a total of 4 h of night interruption (NI) light at an intensity of 70 μmol·m–2·s–1PPFD provided from either red, blue, green, white, or far-red LED in addition to 11 h short day (SD). The results showed that both ‘Sulhyang’ and ‘Maehyang’ produced runners when a photoperiod was longer than 16 h, and the number of runners induced positively correlated with the length of photoperiod. However, the plant growth, contents of chlorophyll, sugar and starch, and Fv/Fo decreased in a 22 h photoperiod. All qualities of the NI light, especially red light, significantly increased the number of runners and daughter plants induced per plant as compared with those in the SD treatment in both cultivars. In a conclusion, a photoperiod between 16 and 20 h and NI light, especially red NI light, can be used for quality runner induction in both ‘Sulhyang’ and ‘Maehyang’.


2013 ◽  
Vol 378 ◽  
pp. 440-443
Author(s):  
Chiu Jung Yang ◽  
Chien Sheng Huang ◽  
Chih Wei Chen ◽  
Po Wen Chen

Thepaperis discussedin coloruniformity study.The experiment divided into two steps in this study,first is modules design and simulation. Second is fabrication and measurement.After measure the LEDs property, calculating the ratio of each colored LEDs by using Grassmanns Law,modeling by Solidworks, and simulating the front study by optical software TracePro.Using four-color mixing with self-developed formula to avoid the present white light emitting diode patent, and the four-color grains are Red, Green, Blue and adding Y to modify the overall quality of the mixed light.The phosphorproduceSteabler-Wronsk hardly in the high temperatureas compared tofour-color mixing.Using four-color mixing to producehigher color rendering index than yellow phosphor.Series-parallel array of grain arrangement adopted to achieve the high demand for uniformity, while simplifying the design conditions by a certain current instead of the general mixed light-driven complex driver circuit,the completion of the mixing module using integrating sphere, light spectrum on the spectrophotometer, optical power, color coordinates values, such as mixing uniformity measurements.The chromaticity coordinates errors after complete results of the mixing module measurement and simulation can be controlled under (0.01x, 0.01y).


2021 ◽  
Author(s):  
Lung-Chien Chen ◽  
Yen-Hung Tien ◽  
Jianjun Tian

Abstract In this work, trioctylphosphine oxide (TOPO) ligand is employed to improve the quality of CsPbBr1.2I1.8 quantum dots (QDs) films. Lead nitrate (Pb(NO3)2) is also used to passivate the surface of the films. The study of ligand and surface passivation on the luminous efficiency of red light-emitting diode (LED) is discussed. The CsPbBr1.2I1.8 QDs films co-doped with TOPO and Pb(NO3)2 can effectively improve the performance of the CsPbBr1.2I1.8 QDs LEDs due to reduction of non-radiation recombination of the carriers and smooth morphology in the active layer, thus improving the injection and transportation capabilities of carriers. As a result, the highest luminosity and current efficiency are 502.7 cd/m2 and 0.175 cd/A, respectively.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 816
Author(s):  
Jianfeng Zheng ◽  
Peidian Gan ◽  
Fang Ji ◽  
Dongxian He ◽  
Po Yang

This study was conducted to compare the effects of broad spectrum during the whole seedling period and photon flux density (PFD) in the healing stage on the growth and energy use efficiency of grafted tomato (Lycopersicon esculentum Mill.) transplants in a plant factory. Fluorescent lights, white LED lights, and white plus red LED lights were applied at the growth processes of grafted tomato transplants from germination of rootstock and scion to post-grafting. Three levels of PFD (50, 100, 150 μmol m−2 s−1) were set in the healing stage under each kind of light quality. The results indicated that the growth and quality of grafted tomato transplants under different broad spectrums were influenced by the ratio of red to blue light (R/B ratio) and the ratio of red to far-red light (R/FR ratio). A higher R/B ratio was beneficial to total dry matter accumulation, but excessive red light had a negative effect on the root to shoot ratio and the seedling quality index. The higher blue light and R/FR ratio suppressed stem extension synergistically. The LED lights had good abilities to promote plant compactness and leaf thickness in comparison with fluorescent lights. The plant compactness and leaf thickness increased with the increase in daily light integral in the healing stage within a range from 2.5 to 7.5 mol m−2 d−1 (PFD, 50 to 150 μmol m−2 s−1). Compared to fluorescent lights, the LED lights showed more than 110% electrical energy saving for lighting during the whole seedling period. Higher PFD in the healing stage did not significantly increase the consumption of electric power for lighting. White plus red LED lights with an R/B ratio of 1.2 and R/FR ratio of 16 were suggested to replace fluorescent lights for grafted tomato transplants production considering the high quality of transplants and electrical energy saving, and PFD in the healing stage was recommended to be set to 150 μmol m−2 s−1.


Horticulturae ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 361
Author(s):  
Zhengnan Yan ◽  
Long Wang ◽  
Yifei Wang ◽  
Yangyang Chu ◽  
Duo Lin ◽  
...  

Insufficient light in autumn–winter may prolong the production periods and reduce the quality of plug seedlings grown in greenhouses. Additionally, there is no optimal protocol for supplementary light strategies when providing the same amount of light for plug seedling production. This study was conducted to determine the influences of combinations of supplementary light intensity and light duration with the same daily light integral (DLI) on the morphological and physiological properties of cucumber seedlings (Cucumis sativus L. cv. Tianjiao No. 5) grown in a greenhouse. A supplementary light with the same DLI of 6.0 mol m−2 d−1 was applied with the light duration set to 6, 8, 10, or 12 h d−1 provided by light-emitting diodes (LEDs), and cucumber seedlings grown with sunlight only were set as the control. The results indicated that increasing DLI using supplementary light promoted the growth and development of cucumber seedlings over those grown without supplementary light; however, opposite trends were observed in the superoxide dismutase (SOD) and catalase (CAT) activities. Under equal DLI, increasing the supplementary light duration from 6 to 10 h d−1 increased the root surface area (66.8%), shoot dry weight (24.0%), seedling quality index (237.0%), root activity (60.0%), and stem firmness (27.2%) of the cucumber seedlings. The specific leaf area of the cucumber seedlings decreased quadratically with an increase in supplementary light duration, and an opposite trend was exhibited for the stem diameter of the cucumber seedlings. In summary, increased DLI or longer light duration combined with lower light intensity with equal DLI provided by supplementary light in insufficient sunlight seasons improved the quality of the cucumber seedlings through the modification of the root architecture and stem firmness, increasing the mechanical strength of the cucumber seedlings for transplanting.


Sign in / Sign up

Export Citation Format

Share Document