scholarly journals Spatial Assessment of Urban Climate Change Vulnerability during Different Urbanization Phases

2019 ◽  
Vol 11 (8) ◽  
pp. 2406 ◽  
Author(s):  
Cheng He ◽  
Liguo Zhou ◽  
Weichun Ma ◽  
Yuan Wang

In urban areas, concentrated populations and societal changes intensify the influence of climate change. However, few studies have focused on vulnerability to climate-related risks on the scale of a single urban area. Against this backdrop, we reconstructed a spatial vulnerability framework based on the drivers-pressures-state-impact-response (DPSIR) model to reflect the complex interactions between urbanization and climate change and to integrate the natural and socio-economic factors of urban areas into this framework. Furthermore, to explore the relationship between rapid urbanization and climate change, we studied data from two years that represented different stages of urbanization. The results showed that the index framework was able to reconcile these two concepts to reflect the complex interactions between urbanization and climate change. The assessment results indicate that the overall degree of climate change vulnerability exhibits a generally increasing and dispersing trend after rapid urbanization. The increasing trend is influenced by an increase in low-vulnerability areas, and the dispersing trend is influenced by anthropogenic activities caused by rapid urbanization. The changes are reflected in the following observations: 1. The suburbs are affected by their own natural environmental characteristics and rapid urbanization; the vulnerability level has risen in most areas but has declined in certain inland areas. 2. High-vulnerability regions show minor changes during this stage due to the lasting impact of climate change. Finally, the main environmental problems faced by high-vulnerability areas are discussed based on existing research.

2021 ◽  
Author(s):  
Joachim Fallmann ◽  
Hans Schipper ◽  
Stefan Emeis ◽  
Marc Barra ◽  
Holger Tost

<p>With more and more people residing in cities globally, urban areas are particularly vulnerable to climate change. It is therefore important, that the principles of climate-resilient city planning are reflected in the planning phase already. A discussion of adaptation measures requires a holistic understanding of the complex urban environment, and necessarily has to involve cross-scale interactions, both spatially and temporally. This work examines the term “Smart City” with regard to its suitability for the definition of sustainable urban planning based on urban climate studies over the past decade and own modelling work. Existing literature is assessed from a meteorological perspective in order to answer the question how results from these studies can be linked to architectural design of future urban areas. It has been long understood that measures such as urban greening, or so-called "Nature Based Solutions", are able to dampen excess heat and help reducing energetic costs. As numerous studies show however, integrating vegetation in the urban landscape shares a double role in regional adaptation to climate change due to both cooling effect and air pollution control. Using the state-of-the-art chemical transport model MECO(n) coupled to the urban canopy parametrisation TERRA_URB, we simulated a case study for the Rhine-Main metropolitan region in Germany, highlighting mutual unwanted relationships in modern city planning. Hence, we oppose the so-called compact city approach to an urban greening scenario with regard to the potential for both heat island mitigation and air quality.</p>


2020 ◽  
Vol 12 (4) ◽  
pp. 1501
Author(s):  
Sébastien Dujardin ◽  
Damien Jacques ◽  
Jessica Steele ◽  
Catherine Linard

Climate change places cities at increasing risk and poses a serious challenge for adaptation. As a response, novel sources of data combined with data-driven logics and advanced spatial modelling techniques have the potential for transformative change in the role of information in urban planning. However, little practical guidance exists on the potential opportunities offered by mobile phone data for enhancing adaptive capacities in urban areas. Building upon a review of spatial studies mobilizing mobile phone data, this paper explores the opportunities offered by such digital information for providing spatially-explicit assessments of urban vulnerability, and shows the ways these can help developing more dynamic strategies and tools for urban planning and disaster risk management. Finally, building upon the limitations of mobile phone data analysis, it discusses the key urban governance challenges that need to be addressed for supporting the emergence of transformative change in current planning frameworks.


Resources ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 39
Author(s):  
Marta Irene DeLosRíos-White ◽  
Peter Roebeling ◽  
Sandra Valente ◽  
Ines Vaittinen

Developing urban and peri-urban ecosystem services with nature-based solutions (NBS) and participatory approaches can help achieve more resilient and sustainable environments for cities and urban areas in the face of climate change. The co-creation process is increasingly recognised as the way forward to deal with environmental issues in cities, allowing the development of associated methods and tools that have been described and published for specific stages. It is argued that the co-creation process comprises various interlinked stages, corresponding stakeholders, and subsequent methods and tools that need to be mapped and integrated across all stages. In this study, a Life Cycle Co-Creation Process (LCCCP) for NBS is developed, building on continuous improvement cycles and Design Thinking methodologies, and for which the stages and substages, involved stakeholders and engagement methods and tools are mapped and defined. For stakeholders, the actors of an Urban Living Lab (ULL) are adapted to the LCCCP; for the engagement methods and tools, the goals of stakeholder engagement are used as a guide to select examples of co-creation methods and tools. The developed LCCCP comprises five stages, i.e., CoExplore, CoDesign, CoExperiment, CoImplement and CoManagement, creating a unique path that can be followed by practitioners for NBS co-creation.


2012 ◽  
Vol 12 (5) ◽  
pp. 1811-1821 ◽  
Author(s):  
E. Tromeur ◽  
R. Ménard ◽  
J.-B. Bailly ◽  
C. Soulié

Abstract. Natural hazards, due to climate change, are particularly damaging in urban areas because of interdependencies of their networks. So, urban resilience has to face up to climate risks. The most impacting phenomenon is the urban heat island (UHI) effect. The storage capacity of heat is depending on shapes of buildings, public spaces, spatial organization, transport or even industrial activities. So, adaptive strategies for improving urban climate could be possible in different ways. In the framework of the French project Resilis, this study characterises urban vulnerability and resilience in terms of energy needs of buildings and outside urban comfort according to the IPCC carbon dioxide emission scenarios B2 and A2 for the period 2050–2100 for 10 French cities. The evolutions of four climate indicators in terms of heating and cooling needs and number of hours when the temperature is above 28 °C are then obtained for each city to analyse climate risks and their impacts in urban environment.


2007 ◽  
Vol 56 (4) ◽  
pp. 165-173 ◽  
Author(s):  
R.E. de Graaf ◽  
N.C. van de Giesen ◽  
F.H.M. van de Ven

Urbanization, land subsidence and sea level rise will increase vulnerability to droughts in the urbanized low-lying areas in the western part of the Netherlands. In this paper a possibility is explored to decrease vulnerability of urban areas by implementing an alternative water supply option. A four component vulnerability framework is presented that includes threshold capacity, coping capacity, recovery capacity and adaptive capacity. By using the vulnerability framework it is elaborated that current water supply strategies in the Netherlands mainly focus on increasing threshold capacity by constructing improved water storage and delivery infrastructure. A complete vulnerability decreasing strategy requires measures that include all four components. Adaptive capacity can be developed by starting experiments with new modes of water supply. A concept which is symbolically called ‘the closed city’ uses local urban rainfall as the only source of water supply. The ‘closed city’ can decrease the water dependence of urban areas on (1) the surrounding rural areas that are diminishing in size and that are increasingly under strain and (2) river water resources that will probably be less constant and reliable as a result of climate change.


2021 ◽  
Vol 13 (4) ◽  
pp. 2245
Author(s):  
Fernando Barriuso ◽  
Beatriz Urbano

Green roofs and walls can mitigate the environmental and climate change of a city. They can decrease the urban heat island (UHI), reduce greenhouse gas emissions, fix environmental pollutants, manage urban stormwater runoff, attenuate noise, and enhance biodiversity. This paper aims to analyse green roofs and walls in the possible mitigation of urban climate change and compare it by continent. Green roofs and walls might decrease the air temperature in a city up to 11.3 °C and lower the thermal transmittance into buildings up to 0.27 W/m2 K. Urban greening might sequester up to 375 g C·m−2 per two growing seasons and increase stormwater retention up to 100%. Urban greening might attenuate city noise up to 9.5 dB. The results found green roofs and walls of varied effectiveness in ameliorating climate extremes present in host continents. Results show urban planners might focus on green roofs and walls exposure to attenuate temperatures in hotter Asian cities and advise greening in cities in Africa and Asia. European and American designers might optimise runoff water capacity of green roofs and walls systems and use greening in old buildings to improve insulation. Recommendations are made based on the study to concentrate certain designs to have greater impact on priority climate challenges, whether UHI or stormwater related. This study provides information for decision and policymakers regarding design and exposure of green roofs and walls to mitigate urban environmental and climate change.


2020 ◽  
Author(s):  
Sebastian Hettrich ◽  
Björn Maronga ◽  
Siegfried Raasch

<p align="justify">In a world with increasing extreme weather events, such as dry or extreme rain periods, due to climate change and an ever growing population specifically in urban areas, a forsighted planning and adaption of cities and their urban surroundings is becoming more and more important. Here, particularly health and comfort of the urban population, such as thermal comfort, air quality, ventilation or UV exposure, but also other aspects like safety and environmental sustainability play an important role. In order to create the cities of tomorrow that meet the real requirements to host healthy and firendly living conditions, city planners are relying on scientific models where they can simulate how changes in the urban environment can effect its climate. The PALM-4U (Parallelised Large-Eddy Simulation Model for Urban Applications) model was specifically developed to be able to simulate a large variety of parameters on short timescales and at the high resolution that is required to resolve single buildings or obstacles like trees within the city.</p><p align="justify">In September 2019, the second phase of the German research project MOSAIK (model-based city planning and application in climate change), a module within the large over-arching project [UC]² (Urban Climate Under Change) that focusses on the further development of the model, has started.</p><p align="justify">In this overview, we will present the PALM-4U‘s current capabilities and outline the planned future development in the coming years like windbreak modelling, coupling with traffic flow models, including biogenic volatile organic compounds in urban air quality modelling. Furthermore, our PALM-4U community model strategy will be explained.</p>


2019 ◽  
Vol 1 ◽  
pp. 32-44
Author(s):  
Binaya Kumar Mishra

Groundwater table depletion and increasing flood events can be easily realized in urban areas. It is necessary to improve existing storm water management systems for good quality water environment and reduced hydro-meteorological disasters while preserving our natural/pristine environment in a sustainable manner. This can be achieved through optimal collection, infiltration and storage of storm water. The need of sustainable storm water management is desired and optimal capture measure is explored in this paper. This paper provides a review of storm water management in urbanization and climate change context with a case study of Tokyo Metropolitan, Japan which could be helpful in mitigating the dual problems of groundwater depletion and flood events. This paper presents the overview of storm water run-off management in order to guide future storm water management policies. Also, the effects of different onsite facilities from water harvesting, reuse, ponds and infiltration are explored to establish adaptation strategies that restore water cycle and reduce climate change induced flood and water scarcity.


2021 ◽  
Vol 13 (19) ◽  
pp. 10923
Author(s):  
Jing Kong ◽  
Yongling Zhao ◽  
Jan Carmeliet ◽  
Chengwang Lei

With rapid urbanization, population growth and anthropogenic activities, an increasing number of major cities across the globe are facing severe urban heat islands (UHI). UHI can cause complex impacts on the urban environment and human health, and it may bring more severe effects under heatwave (HW) conditions. In this paper, a holistic review is conducted to articulate the findings of the synergies between UHI and HW and corresponding mitigation measures proposed by the research community. It is worth pointing out that most studies show that urban areas are more vulnerable than rural areas during HWs, but the opposite is also observed in some studies. Changes in urban energy budget and major drivers are discussed and compared to explain such discrepancies. Recent studies also indicate that increasing albedo, vegetation fraction and irrigation can lower the urban temperature during HWs. Research gaps in this topic necessitate more studies concerning vulnerable cities in developing countries. Moreover, multidisciplinary studies considering factors such as UHI, HW, human comfort, pollution dispersion and the efficacy of mitigation measures should be conducted to provide more accurate and explicit guidance to urban planners and policymakers.


Sign in / Sign up

Export Citation Format

Share Document