scholarly journals Modeling and Validation of the Cool Summer Microclimate Formed by Passive Cooling Elements in a Semi-Outdoor Building Space

2020 ◽  
Vol 12 (13) ◽  
pp. 5360
Author(s):  
Maria Alejandra Del Rio ◽  
Takashi Asawa ◽  
Yukari Hirayama

Previous measurements (Del Rio et al. 2019) have confirmed the formation of cool summer microclimates through a combination of passive cooling elements (i.e., evaporative cooling louver, vegetation, and sunscreen) in semi-outdoor building spaces in Japan. Computational fluid dynamics (CFD) simulation is useful to understand the contribution of each element to semi-outdoor and indoor microclimates with natural ventilation, and to determine their effective combination. To date, there have not been sufficient studies on the modeling and validation for the CFD simulation of microclimates by such elements. This study demonstrates the modeling method using literature-based values and field measurements. It also demonstrates model validity by comparing the obtained results with field measurements. The results show that CFD simulation with detailed modeling of these elements can replicate vertical temperature distributions at four different positions across the semi-outdoor space and indoor space. The maximum difference in air temperature between the measurements and simulation results was 0.7–1 °C. The sensitivities of each passive cooling element on the microclimates formed in both spaces were confirmed. The watered louver condition and shorter louver–window distance were most effective in cooling both spaces. These results indicate that the modeling method could be effectively applied to assess cool microclimates and formulate a passive cooling design.

2020 ◽  
Vol 172 ◽  
pp. 06005
Author(s):  
Mantas Dobravalskis ◽  
Lina Šeduikytė ◽  
Ugnė Didžiariekytė

Aging is one of the biggest challenges that our society will face in the next decades to come. Multiple sources predict that the number of elderly people will rapidly increase in a lot of regions around the world. In Europe alone it is estimated that the number of elderly people will increase by up to 5 times in the next 30 years. With a growing number of elderly people, the importance of taking care of them also grows. Therefore, we need to make sure that the conditions they live in are suitable for their specific needs: both comfort vise and health vise. To evaluate the current situation and issues in elderly care centers field measurements were taken in ECC in Kaunas, Lithuania. During these measurements, data were collected about temperature and relative humidity at multiple rooms in the care center. Gathered data was analyzed and major issues were noticed. The second stage of this study included CFD simulations of one of the rooms that ECC residents live in. Currently, this building only has natural ventilation in all of its rooms. Mechanical ventilation was simulated to see how it would impact air quality and thermal comfort in such rooms. Two main types of ventilation were simulated: mixing ventilation and displacement ventilation. Both methods were compared to natural ventilation and each one was evaluated as a potential solution for solving current issues in elderly care centers. It is also important to make sure that the solution chosen is sustainable and can be widely implemented.


2014 ◽  
Vol 554 ◽  
pp. 696-700 ◽  
Author(s):  
Nur Farhana Mohamad Kasim ◽  
Sheikh Ahmad Zaki ◽  
Mohamed Sukri Mat Ali ◽  
Ahmad Faiz Mohammad ◽  
Azli Abd Razak

Wind-induced ventilation is widely acknowledged as one of the best approaches for inducing natural ventilation. Computational fluid dynamics (CFD) technique is gaining popularity among researchers as an alternative for experimental methods to investigate the behavior of wind-driven ventilation in building. In this present paper, Reynolds averaged Navier-Stokes equation (RANS) k-ε model approach is considered to simulate the airflow on a simplified cubic building with an opening on a single façade. Preliminary simulation using models from previous experiment indicates the reliability of OpenFOAM, the open source software that will be used in this study. The results obtained in this study will better define options for our future study which aims to explore how different buildings arrays modify the airflow inside and around a naturally ventilated building.


2011 ◽  
Vol 374-377 ◽  
pp. 268-272
Author(s):  
Hai Yun Wang ◽  
Jing Shi

In this essay, the cooling method design was discussed from the perspective of architecture design using passive design based on the climate and geological environment of Shenzhen city. It concluded that shading and natural ventilation should be the major cooling method for this area, and design recommendations were put forward based on analysis from the perspective of plan layout, shape design, space form and detailed construction design.


2021 ◽  
Vol 263 (1) ◽  
pp. 5327-5334
Author(s):  
SK Tang ◽  
Rudolf YC Lee

A new device called 'enhanced acoustic balcony' is installed in a new housing estate in Hong Kong. It is intended to help reduce the impact of traffic noise on the residents. This balcony is basically an enlarged form of a plenum window and with three openings. Apart from the outdoor air inlet, there is the balcony door and a side-hung window on the interior balcony wall for natural ventilation of the indoor space. Sound absorption of NRC 0.7 is installed on the balcony ceiling and its sidewall facing the incoming traffic noise and an inclined panel is installed outside the balcony to provide noise screening. A site measurement of its noise reduction is carried out in the present study in a newly completed housing block. A 28 m long loudspeaker array is used as the sound source. The indoor noise levels are measured according to ISO standard. The results show that the difference between indoor and outdoor noise levels in the presence of this balcony form varies over a relatively narrow range between 10 to 13 dBA for an elevation angle from 25 to 60 deg. There is a weak increase of the noise level difference with elevation angle.


Author(s):  
S.S. Kobylkin ◽  
◽  
V.M. Khubieva ◽  

Safety of mining operations is the basis for the efficient functioning of the mines. During mining operations, due to changing conditions in the mine workings, the natural draft began to appear more frequent. Moreover, its influence can be limited to a separate section without affecting the entire ventilation network. In this paper, the new concept is introduced and explained — local natural ventilation. The classification signs and the negative consequences of its manifestation are presented. Main difference between the local natural ventilation as a subspecies of natural ventilation as a whole lies in the limited action both in the spaces of mine workings or individual sections, and in time. Particularly its occurrence depends on the season or the technological processes performed. In this case, the local natural ventilation is not an emergency and is not subject to registration as an incident or accident. However, its manifestations can lead to both incidents and accidents. Taking this factor into account will allow to increase the level of aerological safety at the mining enterprises. A method of three-dimensional computer modeling is proposed for predicting the manifestation of local natural ventilation and making decisions to prevent it. An example of the use of this approach at the Norilsk mine during the construction of shafts with verification of field measurements is given. It confirms the possibility of practical application of the proposed calculation method. The algorithm for registering the local natural ventilation considered in the article makes it possible to develop activities for improving the level of industrial safety at the mining enterprises as a whole.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 406 ◽  
Author(s):  
Xiaoyu Ying ◽  
Yanling Wang ◽  
Wenzhe Li ◽  
Ziqiao Liu ◽  
Grace Ding

This paper presents a study of the effects of wind-induced airflow through the urban built layout pattern using statistical analysis. This study investigates the association between typically enclosed office building layout patterns and the wind environment. First of all, this study establishes an ideal site model of 200 m × 200 m and obtains four typical multi-story enclosed office building group layouts, namely the multi-yard parallel opening, the multi-yard returning shape opening, the overall courtyard parallel opening, and the overall courtyard returning shape opening. Then, the natural ventilation performance of different building morphologies is further evaluated via the computational fluid dynamics (CFD) simulation software Phoenics. This study compares wind speed distribution at an outdoor pedestrian height (1.5 m). Finally, the natural ventilation performance corresponding to the four layout forms is obtained, which showed that the outdoor wind environment of the multi-yard type is more comfortable than the overall courtyard type, and the degree of enclosure of the building group is related to the advantages and disadvantages of the outdoor wind environment. The quantitative relevance between building layout and wind environment is examined, according to which the results of an ameliorated layout proposal are presented and assessed by Phoenics. This research could provide a method to create a livable urban wind environment.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1042 ◽  
Author(s):  
Shimeng Hao ◽  
Changming Yu ◽  
Yuejia Xu ◽  
Yehao Song

Achieving comfort in hot summer and cold winter (HSCW) climate zones can be challenging, since the climate is characterized by high temperatures in the summer and relatively colder temperatures in the winter. Courtyards, along with other semi-open spaces such as verandas and overhangs, play an important role in mitigating outdoor climate fluctuations. In this research, the effects of courtyards on the thermal performance of vernacular houses in HSCW climate zones were studied via field measurements and computational fluid dynamics (CFD) models. The selected courtyard house was a representative vernacular timber dwelling situated in the southeast of Chongqing, China. The indoor and outdoor air temperature measurements revealed that the courtyard did play an active role as a climatic buffer and significantly reduced the temperature’s peak value in the summer, while during the winter, the courtyard prevented the surrounding rooms from receiving direct solar radiation, and thus to some extent acted as a heat barrier. The contributions of thermal mass are quite limited in this area, due to insufficient solar radiation in winter and general building operations. The natural ventilation mechanism of courtyard houses in HSCW zones was further studied through CFD simulations. The selected opened courtyard was compared to an enclosed structure with similar building configurations. The airflow patterns driven by wind and buoyancy effects were first simulated separately, and then together, to illustrate the ventilation mechanisms. The simulation results show that the courtyard’s natural ventilation behavior benefited from the proper openings on ground level.


Sign in / Sign up

Export Citation Format

Share Document