scholarly journals Construction of Cooling Corridors with Multiscenarios on Urban Scale: A Case Study of Shenzhen

2020 ◽  
Vol 12 (15) ◽  
pp. 5903
Author(s):  
Jiansheng Wu ◽  
Si Li ◽  
Nan Shen ◽  
Yuhao Zhao ◽  
Hongyi Cui

Under the background of rapid urbanization, the urban heat island (UHI) effect is becoming increasingly significant. It is very important for the sustainable development of cities to carry out quantitative research on the mitigation of the UHI effect at an urban scale. Taking Shenzhen as an example, this paper puts forward a method for building a cooling corridor for the city with multiscenarios based on the theory of ecological security pattern (ESP), which can realize quantitative planning of the spatial layout of urban green infrastructure (UGI) to alleviate the UHI effect. In this study, cooling sources are identified from the three dimensions of habitat quality, landscape connectivity, and the capacity to provide cooling ecosystem services. The cooling corridors that are superior at cooling, isolation, and ventilation are selected and optimized. The results show that the identified ecological cooling source area accounts for 33.18% of the total area of Shenzhen, and more than 85% of the area falls within the scope of the basic ecological control line of Shenzhen. There are 48 cooling corridors with a total length of 289.17 km in the cooling priority scenario, which mostly pass through the high-temperature and subhigh-temperature areas of each administrative region and city, providing a good cooling effect but poor feasibility. There are 48 corridors with a total length of 326.66 km in the isolation priority scenario, which mostly pass through the administrative region boundary and have a weak connection with the urban heat island, avoiding the built-up areas with strong human activities. As consequence, cooling is relatively achievable, but its effect is not ideal. There are 47 corridors with a total length of 368.06 km in the ventilation priority scenario, including many urban main roads and river systems that fully utilize the area’s strong natural wind conditions and realize various functions; however, the cooling effect is suboptimal. Corridors with great potential in cooling, isolation, ventilation, and noise reduction were determined after comprehensive optimization.

2021 ◽  
Vol 13 (2) ◽  
pp. 762
Author(s):  
Liu Tian ◽  
Yongcai Li ◽  
Jun Lu ◽  
Jue Wang

High population density, dense high-rise buildings, and impervious pavements increase the vulnerability of cities, which aggravate the urban climate environment characterized by the urban heat island (UHI) effect. Cities in China provide unique information on the UHI phenomenon because they have experienced rapid urbanization and dramatic economic development, which have had a great influence on the climate in recent decades. This paper provides a review of recent research on the methods and impacts of UHI on building energy consumption, and the practical techniques that can be used to mitigate the adverse effects of UHI in China. The impact of UHI on building energy consumption depends largely on the local microclimate, the urban area features where the building is located, and the type and characteristics of the building. In the urban areas dominated by air conditioning, UHI could result in an approximately 10–16% increase in cooling energy consumption. Besides, the potential negative effects of UHI can be prevented from China in many ways, such as urban greening, cool material, water bodies, urban ventilation, etc. These strategies could have a substantial impact on the overall urban thermal environment if they can be used in the project design stage of urban planning and implemented on a large scale. Therefore, this study is useful to deepen the understanding of the physical mechanisms of UHI and provide practical approaches to fight the UHI for the urban planners, public health officials, and city decision-makers in China.


2021 ◽  
Vol 13 (3) ◽  
pp. 1099
Author(s):  
Yuhe Ma ◽  
Mudan Zhao ◽  
Jianbo Li ◽  
Jian Wang ◽  
Lifa Hu

One of the climate problems caused by rapid urbanization is the urban heat island effect, which directly threatens the human survival environment. In general, some land cover types, such as vegetation and water, are generally considered to alleviate the urban heat island effect, because these landscapes can significantly reduce the temperature of the surrounding environment, known as the cold island effect. However, this phenomenon varies over different geographical locations, climates, and other environmental factors. Therefore, how to reasonably configure these land cover types with the cooling effect from the perspective of urban planning is a great challenge, and it is necessary to find the regularity of this effect by designing experiments in more cities. In this study, land cover (LC) classification and land surface temperature (LST) of Xi’an, Xianyang and its surrounding areas were obtained by Landsat-8 images. The land types with cooling effect were identified and their ideal configuration was discussed through grid analysis, distance analysis, landscape index analysis and correlation analysis. The results showed that an obvious cooling effect occurred in both woodland and water at different spatial scales. The cooling distance of woodland is 330 m, much more than that of water (180 m), but the land surface temperature around water decreased more than that around the woodland within the cooling distance. In the specific urban planning cases, woodland can be designed with a complex shape, high tree planting density and large planting areas while water bodies with large patch areas to cool the densely built-up areas. The results of this study have utility for researchers, urban planners and urban designers seeking how to efficiently and reasonably rearrange landscapes with cooling effect and in urban land design, which is of great significance to improve urban heat island problem.


2013 ◽  
Vol 52 (11) ◽  
pp. 2418-2433 ◽  
Author(s):  
A. M. E. Winguth ◽  
B. Kelp

AbstractHourly surface temperature differences between Dallas–Fort Worth, Texas, metropolitan and rural sites have been used to calculate the urban heat island from 2001 to 2011. The heat island peaked after sunset and was particularly strong during the drought and heat wave in July 2011, reaching a single-day instantaneous maximum value of 5.4°C and a monthly mean maximum of 3.4°C, as compared with the 2001–11 July average of 2.4°C. This severe drought caused faster warming of rural locations relative to the metropolitan area in the morning as a result of lower soil moisture content, which led to an average negative heat island in July 2011 of −2.3°C at 1100 central standard time. The ground-based assessment of canopy air temperature at screening level has been supported by a remotely sensed surface estimate from the Moderate Resolution Imaging Spectroradiometer (MODIS) on board the Terra satellite, highlighting a dual-peak maximum heat island in the major city centers of Dallas and Fort Worth. Both ground-based and remotely sensed spatial analyses of the maximum heat island indicate a northwest shift, the result of southeast winds in July 2011 of ~2 m s−1 on average. There was an overall positive trend in the urban heat island of 0.14°C decade−1 in the Dallas–Fort Worth metropolitan area from 2001 to 2011, due to rapid urbanization. Superimposed on this trend are significant interannual and decadal variations that influence the urban climate.


2021 ◽  
Author(s):  
Shihan Chen ◽  
Yuanjian Yang ◽  
Fei Deng ◽  
Yanhao Zhang ◽  
Duanyang Liu ◽  
...  

Abstract. Due to rapid urbanization and intense human activities, the urban heat island (UHI) effect has become a more concerning climatic and environmental issue. A high spatial resolution canopy UHI monitoring method would help better understand the urban thermal environment. Taking the city of Nanjing in China as an example, we propose a method for evaluating canopy UHI intensity (CUHII) at high resolution by using remote sensing data and machine learning with a Random Forest (RF) model. Firstly, the observed environmental parameters [e.g., surface albedo, land use/land cover, impervious surface, and anthropogenic heat flux (AHF)] around densely distributed meteorological stations were extracted from satellite images. These parameters were used as independent variables to construct an RF model for predicting air temperature. The correlation coefficient between the predicted and observed air temperature in the test set was 0.73, and the average root-mean-square error was 0.72 °C. Then, the spatial distribution of CUHII was evaluated at 30-m resolution based on the output of the RF model. We found that wind speed was negatively correlated with CUHII, and wind direction was strongly correlated with the CUHII offset direction. The CUHII reduced with the distance to the city center, due to the de-creasing proportion of built-up areas and reduced AHF in the same direction. The RF model framework developed for real-time monitoring and assessment of high-resolution CUHII provides scientific support for studying the changes and causes of CUHII, as well as the spatial pattern of urban thermal environments.


2021 ◽  
Author(s):  
Emily Elhacham ◽  
Pinhas Alpert

<p>Over a billion people currently live in coastal areas, and coastal urbanization is rapidly growing worldwide. Here, we explore the impact of an extreme and rapid coastal urbanization on near-surface climatic variables, based on MODIS data, Landsat and some in-situ observations. We study Dubai, one of the fastest growing cities in the world over the last two decades. Dubai's urbanization centers along its coastline – in land, massive skyscrapers and infrastructure have been built, while in sea, just nearby, unique artificial islands have been constructed.</p><p>Studying the coastline during the years of intense urbanization (2001-2014), we show that the coastline exhibits surface urban heat island characteristics, where the urban center experiences higher temperatures, by as much as 2.0°C and more, compared to the adjacent less urbanized zones. During development, the coastal surface urban heat island has nearly doubled its size, expanding towards the newly developed areas. This newly developed zone also exhibited the largest temperature trend along the coast, exceeding 0.1°C/year on average.</p><p>Overall, we found that over land, temperature increases go along with albedo decreases, while in sea, surface temperature decreases and albedo increases were observed particularly over the artificial islands. These trends in land and sea temperatures affect the land-sea temperature gradient which influences the breeze intensity. The above findings, along with the increasing relative humidity shown, directly affect the local population and ecosystem and add additional burden to this area, which is already considered as one of the warmest in the world and a climate change 'hot spot'.</p><p> </p><p><strong>References:</strong></p><p>E. Elhacham and P. Alpert, "Impact of coastline-intensive anthropogenic activities on the atmosphere from moderate resolution imaging spectroradiometer (MODIS) data in Dubai (2001–2014)", <em>Earth’s Future</em>, 4, 2016. https://doi.org/10.1002/2015EF000325</p><p>E. Elhacham and P. Alpert, "Temperature patterns along an arid coastline experiencing extreme and rapid urbanization, case study: Dubai", submitted.</p>


2014 ◽  
Vol 2014 ◽  
pp. 1-19 ◽  
Author(s):  
Sahar Sodoudi ◽  
Parisa Shahmohamadi ◽  
Ken Vollack ◽  
Ulrich Cubasch ◽  
A. I. Che-Ani

Cities demonstrate higher nocturnal temperatures than surrounding rural areas, which is called “urban heat island” (UHI) effect. Climate change projections also indicate increase in the frequency and intensity of heat waves, which will intensify the UHI effect. As megacity Tehran is affected by severe heatwaves in summer, this study investigates its UHI characteristics and suggests some feasible mitigation strategies in order to reduce the air temperature and save energy. Temperature monitoring in Tehran shows clear evidence of the occurrence of the UHI effect, with a peak in July, where the urban area is circa 6 K warmer than the surrounding areas. The mobile measurements show a park cool island of 6-7 K in 2 central parks, which is also confirmed by satellite images. The effectiveness of three UHI mitigation strategies high albedo material (HAM), greenery on the surface and on the roofs (VEG), and a combination of them (HYBRID) has been studied using simulation with the microscale model ENVI-met. All three strategies show higher cooling effect in the daytime. The average nocturnal cooling effect of VEG and HYBRID (0.92, 1.10 K) is much higher than HAM (0.16 K), although high-density trees show a negative effect on nocturnal cooling.


Atmosphere ◽  
2020 ◽  
Vol 11 (12) ◽  
pp. 1348
Author(s):  
Abu Taib Mohammed Shahjahan ◽  
Khandaker Shabbir Ahmed ◽  
Ismail Bin Said

Climate change and rapid urbanization are adversely affecting the urban environment by exacerbating the widely reported urban heat island effect in Dhaka, Bangladesh. Two wetland areas with variable riparian shadings in the warm-humid conditions of urban Dhaka were investigated through field campaigns on microclimatic parameters for their cooling potential on the surrounding urban fabric. It was observed that an inversion layer of fully saturated air develops over the water surface of wetland, suppressing evaporation from the wetland water surface layer, which was effectively reducing the heat exchange between the water surface and the air layer above it through its action as an insulating vapor blanket. Due to this effect, the wetland was unable to render as a source of coolth for the surrounding overheated urban area. This effect of the inversion layer was more pronounced in the urban wetland without riparian shading either by the urban form or tree canopy. A multiphysics simulation study conducted on the selected urban wetlands indicates the effect of differential shading pattern on the relation between fetch and inversion layer thickness. This research hypothesizes that the wetland can act as an urban adaption measure against the urban heat island effect by potentially transforming them into an urban cooling island (UCI) towards a favorable urban bioclimate.


2011 ◽  
Vol 143-144 ◽  
pp. 639-643 ◽  
Author(s):  
Zi Li Zhang ◽  
Hai Yan Yu ◽  
Zun Ying Hu ◽  
Bin Zhou ◽  
Ming Chun Han

By taking advantage of temporal and spatial remote sensing, the present paper was to map, identify and characterize urban heat island in rapid urbanization area of east China. For research areas including six metropolitan cities around Hangzhou bay in east China, urban heat island measurements were monitored from surface temperature maps at 1km resolution derived from MOD11A2 both day and night acquired in the year of 2005 and 2009. LST normalization with NDSTI was applied in order to quantify UHI spatial changes at four seasons. The result showed that urban heat island phenomenon expanded contiguously in the study area. Day change of UHI seems to be more chaos than night change due to day UHI influenced by both solar and human being activities. There was some kind of urban cool island phenomenon in winter when urban surface temperatures were to be -1 – 0°C lower than the ambient LST. Except for winter, other seasons' UHI during daytime changed from 0.5°C to 2.5 °C and nighttime strongly changed from 0.5°C to 5 °C in 2009. During the night, six cites' UHI roughly coincides and UHI in winter was the smallest and in autumn was the biggest one. The study provided causation and environmental awareness of urbanization to urban planners in future urban development.


Sign in / Sign up

Export Citation Format

Share Document