scholarly journals Deployment of Hydropower in Nepal: Multiple Stakeholders’ Perspectives

2020 ◽  
Vol 12 (16) ◽  
pp. 6312
Author(s):  
Rana Pratap Singh ◽  
Hans Peter Nachtnebel ◽  
Nadejda Komendantova

Nepal could rely on its huge renewable energy potentials to meet its energy demand sustainably. Also, renewable energy sources are considered by several national policy makers and international organizations as an engine for socio-economic development of the country, which can provide access to electricity to everybody and stimulate economic activity and economic growth. Several efforts were taken by the national government to stimulate deployment of renewable energy electricity generation capacities. However, the country is still not able to cover its energy needs with renewable energy despite decades of efforts for their deployment. The assumption of this research was that uncertainty in energy policy and planning gaps in Nepal are connected with the dominance of a limited number of discourses and ignorance of other voices which might be helpful. Nowadays, evidence exists that a multi-stakeholder and multi-sector perspective is extremely important for sustainable development. We provide evaluation of various perspectives, including technical, social, economic, environmental, and political. We collect empirical data in frames of a comprehensive stakeholders’ process in Nepal. The stakeholders’ preferences are analyzed through various methods of decision support sciences such as multi criteria decision analysis. To fast track hydropower development, the government has classified them into five categories based on their generation capacity. Assessment of each category and their collective comparison on multiperspectives has never been tried. Hence, such an assessment leading towards their prioritization is the objective of the study. It may help to identify a suitable strategy or policy to maximize national benefits. The study carried within the framework of five alternatives (categories) of hydropower schemes and nine different hydropower perspectives applicable in Nepalese context. The scoring method based is on secondary source evidence is applied for assessment. The study ranks medium schemes (25 to 100 MW) as best in Nepalese context.


2019 ◽  
Vol 11 (20) ◽  
pp. 5774 ◽  
Author(s):  
Karim ◽  
Karim ◽  
Islam ◽  
Muhammad-Sukki ◽  
Bani ◽  
...  

Bangladesh’s constant growth with an annual 6% plus Gross Domestic Product (GDP) for more than the last two decades and achievements in other socio-economic metrics in recent times is impressive and recognized by various global authoritative bodies. The extent of overwhelming economic ventures in the private sector coupled with the commitments of the government clearly demonstrates the transformation of the country from a primarily agro-based economy to one influenced by the manufacturing and service sectors. Bangladesh is fortunate to have fossil fuel reserves on a limited scale, though these are not enough to run the ongoing massive scale development activities, both in private and public sectors. Thus, the constant and uninterrupted supply of energy at an affordable price remains a serious concern for the successive governments. Therefore, this issue of supply of constant energy has turned to be an important part in the national development agenda. Besides, the country is one of the worst victim nations of the devastating effects of global warming and climate change. As Bangladesh is geographically located in a favorable place in the world map with the availability of plenty of renewable energy sources (RES), the policymakers started to take initiatives leading to exploiting these sources to meet the energy demand of the country. There are both prospects and administrative, legal, technological, socio-cultural and environmental challenges. To address these challenges, it requires comprehensive policy initiatives. A good number of technical and scientific research containing findings and recommendations are available. This paper, which is based on adopting a qualitative research methodology where the contents of secondary sources were analyzed, is an initial attempt to highlight the renewable energy developments in Bangladesh, and subsequently, to evaluate the relevant legal and policy initiatives in the light of international best practices. We advance several recommendations that the stakeholders can consider exploiting RES effectively to attain inclusive, equitable and sustainable development in Bangladesh. These include, inter alia: (1) Enhancing government participation to lead the development of renewable energy (RE); (2) ensuring localization of RE technology; (3) reducing the expenses of energy generation through RES and providing assistance in initial investments; (4) introducing comprehensive legal and regulatory policy for the development of RE industry in Bangladesh; and (5) conducting effective public awareness.



2019 ◽  
Vol 11 (7) ◽  
pp. 2136 ◽  
Author(s):  
Ceren Erdin ◽  
Gokhan Ozkaya

In Turkey, current energy generations are not sufficient for the existing energy needs and besides, energy demand is expected to increase by 4–6 percent annually until 2023. Therefore, the government aims to increase the ratio of renewable energy resources (RES) in total installed capacity to 30 percent by 2023. By this date, total energy investments are expected to be approximately $110 billion. Turkey is the fastest growing energy market among the OECD countries. Therefore, Turkey is an attractive market for energy companies and investors. At this stage, site selection and deciding appropriate RES are the most important feasibility parameters for investment. In this study, “Site Selection in Turkey” issue for RES (solar, wind, hydroelectric, geothermal, biomass) is evaluated by the ELECTRE which is one of the Multi Criteria Decision Making (MCDM) methods. In addition, the reasons for choosing this method are explained according to the literature. The study emphasizes the importance of energy generation from renewable and sustainable sources and is concerned with improving the position of the country. The Turkish government offers many purchasing guarantees and high incentives, especially in the renewable energy sector. As a result of the analysis, the most suitable energy sources are presented according to the geography and energy potential of the regions. The study aims to inform energy firms and everyone related with RES about Turkey’s RES opportunities.



2020 ◽  
Vol 8 (1) ◽  
pp. 18-27
Author(s):  
Natalia Pryshliak ◽  
Dina Tokarchuk

AbstractEnergy needs are determined by three main factors: population growth, the economic development of society, and the scientific and technical level of production processes. These needs are increasing year by year in the world and in 2018 they exceeded 13.5 billion tons of oil equivalent. More and more countries are developing and implementing plans and strategies for significant coverage, within 50-100%, of their energy needs through renewable energy sources. The findings of this study revealed that Ukraine’s energy demand per year is 200 million tons of oil equivalent of energy resources. Currently, the share of renewable energy in the structure of energy consumption in Ukraine is 4.4%. The authors also acknowledged that at the same time, 115 million tons of agricultural plant waste and about 97 million tons of animal waste are generated annually in Ukraine, which makes it possible to produce 7.21 million tons of oil equivalent and 2.2 million tons of oil equivalent, respectively from these. The study found that the production of biofuels from agricultural waste will have social, economic and environmental effects. An efficiency matrix was constructed by the authors to determine these effects. Using the SWOT method of analysis, factors that will affect the development of biofuel production from agricultural waste were determined.



2021 ◽  
Vol 922 (1) ◽  
pp. 012010
Author(s):  
Wusnah ◽  
M. D. Supardan ◽  
S. Haryani ◽  
Yunardi

Abstract Fossil fuels that mainly supply the current increasing world’s energy demand originated from non-renewable resources. In addition to the depletion of their resources within the next short time, the combustion of fossil fuels to power industries and transportation also negatively impacts humans and the environment due to the release of various gaseous pollutants. To increase the share of renewables in the primary energy mix, the Government of Indonesia is currently struggling to meet a target of 23% by 2025. Therefore, more significant efforts to search for potential renewable energy sources are the only way to overcome this issue. Bioethanol is an eco-friendly renewable energy source since its combustion emits a low concentration of pollutants. Microalgae have gained significant interest in bioethanol production because of rapid biomass growth and relatively easy pre-treatment steps. It is renewable, carbon-neutral, sustainable and can be grown in wastewater coupling as wastewater treatment. This paper reviews bioethanol production, providing knowledge on the characteristics of microalgae potential for producing biomass to be converted into bioethanol, introducing process for bioethanol production, and presenting the potential challenges of bioethanol as a future renewable energy.



2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.



Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1988
Author(s):  
Ioannis E. Kosmadakis ◽  
Costas Elmasides

Electricity supply in nonelectrified areas can be covered by distributed renewable energy systems. The main disadvantage of these systems is the intermittent and often unpredictable nature of renewable energy sources. Moreover, the temporal distribution of renewable energy may not match that of energy demand. Systems that combine photovoltaic modules with electrical energy storage (EES) can eliminate the above disadvantages. However, the adoption of such solutions is often financially prohibitive. Therefore, all parameters that lead to a functionally reliable and self-sufficient power generation system should be carefully considered during the design phase of such systems. This study proposes a sizing method for off-grid electrification systems consisting of photovoltaics (PV), batteries, and a diesel generator set. The method is based on the optimal number of PV panels and battery energy capacity whilst minimizing the levelized cost of electricity (LCOE) for a period of 25 years. Validations against a synthesized load profile produced grid-independent systems backed by different accumulator technologies, with LCOEs ranging from 0.34 EUR/kWh to 0.46 EUR/kWh. The applied algorithm emphasizes a parameter of useful energy as a key output parameter for which the solar harvest is maximized in parallel with the minimization of the LCOE.



Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2045
Author(s):  
Pierpaolo Garavaso ◽  
Fabio Bignucolo ◽  
Jacopo Vivian ◽  
Giulia Alessio ◽  
Michele De Carli

Energy communities (ECs) are becoming increasingly common entities in power distribution networks. To promote local consumption of renewable energy sources, governments are supporting members of ECs with strong incentives on shared electricity. This policy encourages investments in the residential sector for building retrofit interventions and technical equipment renovations. In this paper, a general EC is modeled as an energy hub, which is deemed as a multi-energy system where different energy carriers are converted or stored to meet the building energy needs. Following the standardized matrix modeling approach, this paper introduces a novel methodology that aims at jointly identifying both optimal investments (planning) and optimal management strategies (operation) to supply the EC’s energy demand in the most convenient way under the current economic framework and policies. Optimal planning and operating results of five refurbishment cases for a real multi-family building are found and discussed, both in terms of overall cost and environmental impact. Simulation results verify that investing in building thermal efficiency leads to progressive electrification of end uses. It is demonstrated that the combination of improvements on building envelope thermal performances, photovoltaic (PV) generation, and heat pump results to be the most convenient refurbishment investment, allowing a 28% overall cost reduction compared to the benchmark scenario. Furthermore, incentives on shared electricity prove to stimulate higher renewable energy source (RES) penetration, reaching a significant reduction of emissions due to decreased net energy import.



Author(s):  
Bisma Imtiaz ◽  
Imran Zafar ◽  
Cui Yuanhui

Due to the rapid increase in energy demand with depleting conventional sources, the world’s interest is moving towards renewable energy sources. Microgrid provides easy and reliable integration of distributed generation (DG) units based on renewable energy sources to the grid. The DG’s are usually integrated to microgrid through inverters. For a reliable operation of microgrid, it must have to operate in grid connected as well as isolated mode. Due to sudden mode change, performance of the DG inverter system will be compromised. Design and simulation of an optimized microgrid model in MATLAB/Simulink is presented in this work. The goal of the designed model is to integrate the inverter-interfaced DG’s to the microgrid in an efficient manner. The IEEE 13 bus test feeder has been converted to a microgrid by integration of DG’s including diesel engine generator, photovoltaic (PV) block and battery. The main feature of the designed MG model is its optimization in both operated modes to ensure the high reliability. For reliable interconnection of designed MG model to the power grid, a control scheme for DG inverter system based on PI controllers and DQ-PLL (phase-locked loop) has been designed. This designed scheme provides constant voltage in isolated mode and constant currents in grid connected mode. For power quality improvement, the regulation of harmonic current insertion has been performed using LCL filter. The performance of the designed MG model has been evaluated from the simulation results in MATLAB/ Simulink.



2021 ◽  
Vol 12 (3) ◽  
pp. 631
Author(s):  
Sergey BESPALYY

The growth of renewable energy sources (RES) shows the desire of the government of Kazakhstan to meet challenges that affect the welfare and development of the state. National targets, government programs, policies influence renewable energy strategies. In the future, renewable energy technologies will act as sources of a green economy and sustainable economic growth. The state policy in the field of energy in Kazakhstan is aimed at improving the conditions for the development and support of renewable energy sources, amendments are being made to provide for the holding of auctions for new RES projects, which replaces the previously existing system of fixed tariffs. It is expected that the costs of traditional power plants for the purchase of renewable energy will skyrocket, provided that the goals in the field of renewable generation are achieved. This article provides an assessment of international experience in supporting renewable energy sources, as well as analyzes the current situation in the development of renewable energy in Kazakhstan and the impact on sustainable development and popularization of the «green» economy. The study shows that by supporting the development of renewable energy sources, economic growth is possible, which is achieved in an environmentally sustainable way.



2018 ◽  
Vol 7 (1) ◽  
pp. 28-33 ◽  
Author(s):  
Maryudi Maryudi ◽  
Agus Aktawan ◽  
Siti Salamah

National energy demand has been fulfilled by non-renewable energy sources, such as natural gas, petroleum, coal and so on. However, non-renewable energy reserves deplete increasingly which can cause an energy crisis. Conversion of biomass into energy becomes one of the solutions to overcome it. Indonesia has an enormous biomass potential especially from sugarcane plantation. Sugarcane plantations produce waste of bagasse abundantly. Commonly bagasse is utilized as energy source by conventional combustion.  This research studies the utilization of bagasse as energy source by gasification technology to produce gas fuel. The gasification model used in this research is downdraft gasifier equipped with cyclone to separate gas with solid or liquid gasification products. The result has shown  that gasification of bagasse has produced flammable syngas. The increase of bagasse weight increases the amount of syngas of gasification process. Carbon monoxide is the greatest content of syngas, while a few amount of H2, CH4 are also detected. Bagasse through gasification process is very potential source of alternative energy, since it is derived from waste and a cheap material.



Sign in / Sign up

Export Citation Format

Share Document