scholarly journals Changes in Runoff and Sediment Load and Potential Causes in the Malian River Basin on the Loess Plateau

2021 ◽  
Vol 13 (2) ◽  
pp. 443
Author(s):  
Min Du ◽  
Xingmin Mu ◽  
Guangju Zhao ◽  
Peng Gao ◽  
Wenyi Sun

The loessial tableland is a unique landform type on the Loess Plateau in China. Long-term soil erosion has led to the retreat of gullies and the rapid reduction of fertile arable land, which has further decreased agricultural production. In this study, we chose the Malian River basin to analyze the temporal and spatial variation of its runoff and sediment load, as well as the potential causes. The annual runoff and sediment load at six hydrological stations in the study area were collected for the period between 1960 and 2016. The Mann−Kendall and Pettitt tests were respectively applied to detect temporal variations and abrupt changes in the runoff and sediment loads. The results showed that an abrupt change in the runoff and sediment loads occurred in 2003. The average annual runoff in the Malian River was 4.42 × 108 m3 yr−1 from 1960 to 2002, and decreased to 3.32 × 108 m3 yr−1 in 2003–2016. The average annual sediment load was 1.27 × 108 t yr−1 in 1960–2002, and decreased to 0.65 × 108 t yr−1 in 2003–2016. The spatial patterns in the sediment load suggested that the Hongde sub-basin contributed a higher sediment count to the Malian River, which may require additional attention for soil and water conservation in the future. Anthropogenic activities significantly affected runoff and sediment load reduction according to the double-mass curve method, accounting for 90.7% and 78.7%, respectively, whereas rainfall changes were 9.3% and 21.3%, respectively. As such, the present study analyzed the loessial tableland runoff and sediment load characteristics of the Malian River basin for soil and water erosion management.

2020 ◽  
Author(s):  
Haiyan Zheng ◽  
Chiyuan Miao

<p>Over the past 50 years, a series of soil and water conservation measures have been implemented on the Loess Plateau, including biological, engineering, and agricultural measures. As a result, water discharge and sediment load on the plateau have undergone significant changes. In this study, we compared the water discharge and sediment load at more than 100 hydrological stations across the Loess Plateau during the period 2008–2016 (P2) with the water discharge and sediment load during the period 1971–1987 (P1), and detected the main sources of sediment in each of the two periods. We then performed an attribution analysis to quantify the influence of different factors on the changes in sediment load. We found the following results: (1) Water discharge was reduced by 22% in P2 compared with P1, whereas the sediment load was reduced by 74%. (2) Sediment resources are mainly concentrated between Toudaoguai and Tongguan stations: this region contributed more than 88% of the total sediment load at the terminal station (Huayuankou station) in both P1 and P2. (3) When considering only the changes in sediment concentration on the Loess Plateau, we conclude that the contribution of human activities was greater than 72%. This study provides a detailed description of the temporal and spatial variations in water and sediment across the Loess Plateau, providing a reliable reference for the future development of ecological soil and water conservation measures on the Loess Plateau.</p>


Water ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 1054 ◽  
Author(s):  
Qiaoling Guo ◽  
Yaoyao Han ◽  
Yunsong Yang ◽  
Guobin Fu ◽  
Jianlin Li

The streamflow has declined significantly in the coal mining concentrated watershed of the Loess Plateau, China, since the 1970s. Quantifying the impact of climate change, coal mining and soil and water conservation (SWC), which are mainly human activities, on streamflow is essential not only for understanding the mechanism of hydrological response, but also for water resource management in the catchment. In this study, the trend of annual streamflow series by Mann-Kendall test has been analyzed, and years showing abrupt changes have been detected using the cumulative anomaly curves and Pettitt test. The contribution of climate change, coal mining and SWC on streamflow has been separated with the monthly water-balance model (MWBM) and field investigation. The results showed: (1) The streamflow had an statistically significant downward trend during 1955–2013; (2) The two break points were in 1979 and 1996; (3) Relative to the baseline period, i.e., 1955–1978, the mean annual streamflow reduction in 1979–1996 was mainly affected by climate change, which was responsible for a decreased annual streamflow of 12.70 mm, for 70.95%, while coal mining and SWC resulted in a runoff reduction of 2.15 mm, 12.01% and 3.05mm, 17.04%, respectively; (4) In a recent period, i.e., 1997–2013, the impact of coal mining on streamflow reduction was dominant, reaching 29.88 mm, 54.24%. At the same time, the declining mean annual streamflow induced through climate change and SWC were 13.01 mm, 23.62% and 12.20 mm, 22.14%, respectively.


2013 ◽  
Vol 89 (02) ◽  
pp. 153-161 ◽  
Author(s):  
Yang Zhao ◽  
Xinxiao Yu

The Loess Plateau in north-central China has a long history of human activities. As a result of climate change, deforestation and sparse vegetative cover, the region suffers from water shortages and severe soil erosion, significantly influencing efforts for sustainable social development. In order to understand the impacts of climatic variability and human activities on runoff and other hydrological factors in this region, the Luoyugou catchment and its paired catchments (Qiaozidong and Qiaozixi) were selected. Statistical analysis indicated precipitation did not vary significantly whereas the annual runoff decreased from 1986 to 2008, with an abrupt change in 1994. Actual evapotranspiration (AET) increased slightly but not significantly. A comparison of runoff in the paired catchments showed land use changes reduced runoff by more than 38% under the same rainfall conditions. Human activities were the strongest contributor to changes in runoff and AET, at 67% and 90% respectively, while the remaining contributor was climate variation. The influence of various human activities on runoff is quite different, and soil-water conservation initiatives have a greater impact on runoff (about 41%). Thus, human activities were the primary reason for the reduction in runoff in the study catchment compared to climate. Greater emphasis should be given to afforestation and soil-water conservation measures.


2020 ◽  
Author(s):  
Zhe Gao

<p>The Geo-Hazards Triggered of Serial Reclamation Land of Extreme Precipitation in Typical Regions of the Loess Plateau<br>Gao Zhe<sup>1</sup>,Zhang Genguang <sup>1*</sup>,Gao Jian'en<sup>1,2,3</sup>,Li Xingyao<sup>1</sup>,Han Jianqiao<sup>2,3</sup>,Kang Youcai<sup>3</sup>,Guo Zihao<sup>3</sup>,Long Shaobo<sup>2</sup>,Dou Shaohui<sup>2</sup>,Zhang Yuanyuan<sup>3</sup><br>1. College of Water Resources and Architectural Engineering, Northwest A&F University, 712100, Yangling, Shaanxi, China;<br>2. Institute of Soil and Water Conservation, Northwest A&F University, 712100, Yangling, Shaanxi, China;<br>3. Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, 712100, Yangling, Shaanxi, China;</p><p>The “Gully Land Consolidation Project”(GLCP) was widely carried out all over the world, such as Spain, the United States and China. It was a new attempt to solve the shortage of regional land resources. Aiming at the problem that the influence of extreme rainstorms on the “Gully Land Consolidation Project”(GLCP) on the Loess Plateau.By using the method of actual measurement and analysis of categorical data, the erosion disaster in July 26 2017 was investigated in Niu Xue Gully of Wuding River Watershed in Zizhou County of the Central part of the Loess Plateau. The results showed : </p><p>(1) The Niu Xue Gully Small Watershed in Zizhou County (109°55'25"E, 37°39'46"N), which was located in the central part of the Loess Plateau and belonged to the northern Shaanxi Loess Hilly-Gully region. The Niu Xuegou catchment covered an area of 0.48 km<sup>2</sup> and the average altitude of the region in about 1000-1200 meters, land consolidation in the basin about 38 mu(25333.3m<sup>2</sup>)since 2014.</p><p>(2) This storm was characterized by "long duration and large precipitation", the accumulated rainfall was 147.9 mm, the average rainfall intensity was 13.45 mm/h, the maximum rainfall intensity was close to 5 mm/min, the maximum flood peak discharge was 44.64 m<sup>3</sup>/s, the flood duration was about 11 hours, and the flood recurrence period was more than once in a hundred years.</p><p>(3) The storm caused nearly a thousand geological hazards at the channel of the basin. The main types of disasters were as follows, gravity erosion types, such as landslides, landslides, and mudflows, account for 14.85% of the conventional geological hazards; secondary disasters of water erosion types, such as trench erosion and dam erosion, occurring at different locations on the slope, accounted for 51.05% and composite new-derived land destruction and dam break disasters account for nearly 10% .</p><p>(4) The damage of cascade land preparation was closely related to the average flood discharge, embankment height and ecological vegetation cover in the watershed.<br>The investigation provided technical support for the consolidation of the Chinese implementation of the "Cropland to Forest (Grass)" results on the Loess Plateau, and also provided theoretical support for the safe implementation of the “Gully Land Consolidation Project”(GLCP) around the world.<br><br></p><p>Keywords: The loess plateau; Extreme rainstorm;The “Gully Land Consolidation Project”(GLCP)</p><p>Funding:(National Key R&D Program of China: 2017YFC0504703);(National Natural Science Foundation of China,41877078,41371276,51879227);(Research and Development and Integrated demonstration of key Technologies in soil and Water Conservation Engineering,A315021615)</p><p><strong>        </strong></p>


2007 ◽  
Vol 31 (4) ◽  
pp. 389-403 ◽  
Author(s):  
Liding Chen ◽  
Wei Wei ◽  
Bojie Fu ◽  
Yihe Lü

The Loess Plateau, China, has long been suffering from serious soil erosion. About 2000 years ago, larger areas were used for grain production and soil erosion was thus becoming severe with increase in human activity. Severe soil and water loss led to widespread land degradation. During the past decades, great efforts were made in vegetation restoration to reduce soil erosion. However, the efficiency of vegetation restoration was not as satisfactory as expected due to water shortage. China initiated another state-funded scheme, the `Grain-for-Green' project in 1999, on the Loess Plateau to reduce soil erosion and improve land quality. However, the control of soil erosion effectively by land-use modification raised problems. In this paper, the lessons and experiences regarding soil and water conservation in the Loess Plateau in the past decades are analysed first. Urgent problems are then elaborated, such as the contradiction between land resource and human population, shortage of water both in amount and tempospatial distribution for vegetation growth, weak awareness of the problems of soil conservation by local officials, and poor public participation in soil and water conservation. Finally, suggestions regarding soil and water conservation in the Loess Plateau are given. In order to control soil erosion and improve vegetation, a scientific and detailed land-use plan for the Loess Plateau has to be made, in the first instance, and then planning for wise use of water resources should be undertaken to control mass movement effectively and to improve land productivity. Methods of improving public awareness of environmental conservation and public involvement in vegetation rehabilitation are also important.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 352 ◽  
Author(s):  
Ning Wang ◽  
Zhihong Yao ◽  
Wanqing Liu ◽  
Xizhi Lv ◽  
Mengdie Ma

Runoff erosion capacity has significant effects on the spatial distribution of soil erosion and soil losses. But few studies have been conducted to evaluate these effects in the Loess Plateau. In this study, an adjusted SWAT model was used to simulate the hydrological process of the Xihe River basin from 1993 to 2012. The spatial variabilities between runoff erosion capacity and underlying surface factors were analyzed by combining spatial gradient analysis and GWR (Geographically Weighted Regression) analysis. The results show that the spatial distribution of runoff erosion capacity in the studying area has the following characteristics: strong in the north, weak in the south, strong in the west, and weak in the east. Topographic factors are the dominant factors of runoff erosion in the upper reaches of the basin. Runoff erosion capacity becomes stronger with the increase of altitude and gradient. In the middle reaches area, the land with low vegetation coverage, as well as arable land, show strong runoff erosion ability. In the downstream areas, the runoff erosion capacity is weak because of better underlying surface conditions. Compared with topographic and vegetation factors, soil factors have less impact on runoff erosion. The red clay and mountain soil in this region have stronger runoff erosion capacities compared with other types of soils, with average runoff modulus of 1.79 × 10−3 m3/s·km2 and 1.68 × 10−3 m3/s·km2, respectively, and runoff erosion power of 0.48 × 10−4 m4/s·km2 and 0.34 × 10−4 m4/s·km2, respectively. The runoff erosion capacity of the alluvial soil is weak, with an average runoff modulus of 0.96 × 10−3 m3/s·km2 and average erosion power of 0.198 × 10−4 m4/s·km2. This study illustrates the spatial distribution characteristics and influencing factors of hydraulic erosion in the Xihe River Basin from the perspective of energy. It contributes to the purposeful utilization of water and soil resources in the Xihe River Basin and provides a theoretical support for controlling the soil erosion in the Hilly-gully region of the Loess Plateau.


Sign in / Sign up

Export Citation Format

Share Document