scholarly journals Electrical Power Prediction through a Combination of Multilayer Perceptron with Water Cycle Ant Lion and Satin Bowerbird Searching Optimizers

2021 ◽  
Vol 13 (4) ◽  
pp. 2336
Author(s):  
Hossein Moayedi ◽  
Amir Mosavi

Predicting the electrical power (PE) output is a significant step toward the sustainable development of combined cycle power plants. Due to the effect of several parameters on the simulation of PE, utilizing a robust method is of high importance. Hence, in this study, a potent metaheuristic strategy, namely, the water cycle algorithm (WCA), is employed to solve this issue. First, a nonlinear neural network framework is formed to link the PE with influential parameters. Then, the network is optimized by the WCA algorithm. A publicly available dataset is used to feed the hybrid model. Since the WCA is a population-based technique, its sensitivity to the population size is assessed by a trial-and-error effort to attain the most suitable configuration. The results in the training phase showed that the proposed WCA can find an optimal solution for capturing the relationship between the PE and influential factors with less than 1% error. Likewise, examining the test results revealed that this model can forecast the PE with high accuracy. Moreover, a comparison with two powerful benchmark techniques, namely, ant lion optimization and a satin bowerbird optimizer, pointed to the WCA as a more accurate technique for the sustainable design of the intended system. Lastly, two potential predictive formulas, based on the most efficient WCAs, are extracted and presented.

Energies ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 740 ◽  
Author(s):  
Jesus L. Lobo ◽  
Igor Ballesteros ◽  
Izaskun Oregi ◽  
Javier Del Ser ◽  
Sancho Salcedo-Sanz

The prediction of electrical power produced in combined cycle power plants is a key challenge in the electrical power and energy systems field. This power production can vary depending on environmental variables, such as temperature, pressure, and humidity. Thus, the business problem is how to predict the power production as a function of these environmental conditions, in order to maximize the profit. The research community has solved this problem by applying Machine Learning techniques, and has managed to reduce the computational and time costs in comparison with the traditional thermodynamical analysis. Until now, this challenge has been tackled from a batch learning perspective, in which data is assumed to be at rest, and where models do not continuously integrate new information into already constructed models. We present an approach closer to the Big Data and Internet of Things paradigms, in which data are continuously arriving and where models learn incrementally, achieving significant enhancements in terms of data processing (time, memory and computational costs), and obtaining competitive performances. This work compares and examines the hourly electrical power prediction of several streaming regressors, and discusses about the best technique in terms of time processing and predictive performance to be applied on this streaming scenario.


2010 ◽  
Vol 132 (12) ◽  
pp. 57-57
Author(s):  
Lee S. Langston

This article presents an overview of gas turbine combined cycle (CCGT) power plants. Modern CCGT power plants are producing electric power as high as half a gigawatt with thermal efficiencies approaching the 60% mark. In a CCGT power plant, the gas turbine is the key player, driving an electrical generator. Heat from the hot gas turbine exhaust is recovered in a heat recovery steam generator, to generate steam, which drives a steam turbine to generate more electrical power. Thus, it is a combined power plant burning one unit of fuel to supply two sources of electrical power. Most of these CCGT plants burn natural gas, which has the lowest carbon content of any other hydrocarbon fuel. Their near 60% thermal efficiencies lower fuel costs by almost half compared to other gas-fired power plants. Their installed capital cost is the lowest in the electric power industry. Moreover, environmental permits, necessary for new plant construction, are much easier to obtain for CCGT power plants.


Author(s):  
Pascal Fontaine

The US market is currently making a double jump in its HRSG requirements. Heretofore, HRSGs were used largely in industrial size cogen applications. According to the PURPA (Public Utility Regulatory Policy Act), public utilities were required to purchase that electric power generated in excess of the steam host’s needs. Thus, HRSGs were relatively small and operated under constant conditions. Now, HRSGs are much larger (utility size) and also more complex due to the introduction of triple pressure plus reheat behind powerful heavy duty gas turbines. With the onset of deregulation and consequent merchant power, combined cycle plants are now required to supply electrical power to the grid as and when needed with consequent day/night and weekday/weekend cycling. Those merchant plants have to come on and off line with minimal notice and be run sometimes at partial loads. Even units which were originally designed for base load are all eventually forced to cycle as new more efficient power plants are built. Thus, substantial changes in basic HRSG design are needed to cope with these changes. Coincidentally, the types of service projected for USA HRSGs have been in effect in Europe for over two decades. For this reason, European HRSG manufacturers/operators have adopted cycling tolerant Vertical HRSGs based on designs which permit the tubes to expand/contract freely and independently of one another, as distinguished from the more rigid horizontal gas pass design. Thus, fatigue stresses related to load following swings are minimized. This is just an illustration of the specific features of the Vertical European HRSGs for minimizing damages due to cycling related fatigue stresses. Vertical HRSG design shall be considered not only in terms of smaller footprint, but also as a solution to cycling related problems. As generally recognized, the cycling criterion is an integral part of HRSG design. This paper presents solutions to HRSG design issues for cycling tolerant operation. It relates to published data on problems observed with cycling Horizontal HRSGs, and it describes how these problems can be overcome. Concepts, design features and calculation methods applied to cycling tolerant HRSGs are reviewed in detail. Vertical HRSGs have been criticized because of their need for circulation pumps. Interestingly, the need for such pumps was eliminated a decade ago, with the advent of natural circulation for Vertical HRSGs up to 1800 psia (124 bar A) operating pressure.


2015 ◽  
Vol 137 (12) ◽  
pp. 54-55
Author(s):  
Lee S. Langston

This article explains how combined cycle gas turbine (CCGT) power plants can help in reducing greenhouse gas from the atmosphere. In the last 25 years, the development and deployment of CCGT power plants represent a technology breakthrough in efficient energy conversion, and in the reduction of greenhouse gas production. Existing gas turbine CCGT technology can provide a reliable, on-demand electrical power at a reasonable cost along with a minimum of greenhouse gas production. Natural gas, composed mostly of methane, is a hydrocarbon fuel used by CCGT power plants. Methane has the highest heating value per unit mass of any of the hydrocarbon fuels. It is the most environmentally benign of fuels, with impurities such as sulfur removed before it enters the pipeline. If a significant portion of coal-fired Rankine cycle plants are replaced by the latest natural gas-fired CCGT power plants, anthropogenic carbon dioxide released into the earth’s atmosphere would be greatly reduced.


2014 ◽  
Vol 136 (07) ◽  
pp. 38-43
Author(s):  
Lee S. Langston

This article focuses on the use of gas turbines for electrical power, mechanical drive, and marine applications. Marine gas turbines are used to generate electrical power for propulsion and shipboard use. Combined-cycle electric power plants, made possible by the gas turbine, continue to grow in size and unmatched thermal efficiency. These plants combine the use of the gas turbine Brayton cycle with that of the steam turbine Rankine cycle. As future combined cycle plants are introduced, we can expect higher efficiencies to be reached. Since almost all recent and new U.S. electrical power plants are powered by natural gas-burning, high-efficiency gas turbines, one has solid evidence of their contribution to the greenhouse gas reduction. If coal-fired thermal power plants, with a fuel-to-electricity efficiency of around 33%, are swapped out for combined-cycle power plants with efficiencies on the order of 60%, it will lead to a 70% reduction in carbon emissions per unit of electricity produced.


2017 ◽  
Vol 64 (2) ◽  
pp. 188-208 ◽  
Author(s):  
Omid Pourali ◽  
Hashem Ghasemi Kadijani ◽  
Farideh Mohammadi Khangheshlaghi

Purpose An effective chemical conditioning technique was successfully tested and investigated to control and minimize the chemistry-related damages within mixed metallurgy steam and water cycle of Heller dry cooled combined cycle power plants (CCPPs), in which cooling water and condensate are completely mixed in direct contact condenser. This study aims to perform a comprehensive experimental research in four mixed metallurgy steam and water cycle. Design/methodology/approach A comprehensive experimental study was carried out in four mixed metallurgy steam and water cycle fabricated with ferrous- and aluminum-based alloys which have various corrosion resistance capabilities in contact with water. Chemical conditioning was conducted using both volatile and non-volatile alkalizing agents, and, to perform chemical conditioning effectively, quality parameters (pH, conductivity, dissolved oxygen, sodium, silica, iron, aluminum and phosphate) were monitored by analyzing grab and online samples taken at eight key sampling points. Findings Results indicated that pH was the most critical parameter which was not mainly within the recommended ranges of widely used standards and guidelines at all key sampling points that generally increases the occurrence of chemistry-related damages. The other quality parameters were mostly satisfactory. Originality/value In this research, the development of a suitable chemical conditioning technique in mixed metallurgy steam and water cycle, fabricated with ferrous and aluminum-based alloys, was studied. The obtained results in this thorough research work was evaluated by comparison with the chemistry limits of the widely used standards and guidelines, and combined use of volatile and solid alkalizing agents was considered as a promising chemical conditioning technique for utilization in mixed metallurgy units of Heller dry cooled CCPPs.


Author(s):  
Peter Rez

Nearly all electrical power is generated by rotating a coil in a magnetic field. In most cases, the coil is turned by a steam turbine operating according to the Rankine cycle. Water is boiled and heated to make high-pressure steam, which drives the turbine. The thermal efficiency is about 30–35%, and is limited by the highest steam temperature tolerated by the turbine blades. Alternatively, a gas turbine operating according to the Brayton cycle can be used. Much higher turbine inlet temperatures are possible, and the thermal efficiency is higher, typically 40%. Combined cycle generation, in which the hot exhaust from a gas turbine drives a Rankine cycle, can achieve thermal efficiencies of almost 60%. Substitution of coal-fired by combined cycle natural gas power plants can result in significant reductions in CO2 emissions.


Author(s):  
Michael F. Keller

A recently patented hybrid technology may prove to be an energy game-changer. This innovative integrated combined cycle uses two fuels and a large gas (combustion) turbine in tandem with a small, efficient helium nuclear reactor to cleanly produce electrical power. The hybrid approach to energy sustainability combines the strengths of individual energy assets to yield an optimal solution to meet the planet’s needs. This integration is more effective than the sum of the individual technologies by themselves. The hybrid is able to efficiently use all of fuel resources available in the US in a single power plant. The hybrid-nuclear family of technologies is a fail-safe, environmentally friendly and evolutionary new direction for nuclear power and energy production.


Author(s):  
Harikrishnan R ◽  
K.C James

Usually Electrical Power is generated in large scale using Air Compressors and Gas Turbine Systems. This type of Power plants is usually used as Peak load Power Plants. These Power Plants can assist in various power generation process along with base load power plants like Thermal Power Plants, Combined cycle power plants etc. Here in this Research paper, a new method of Power generation is being discussed. It utilizes an Air Compressor-Air Turbine System for Electrical Power generation by means of effective power transmission. This method is simple and less costly. It requires less space and less skilled laborer. It can be used in Stand by and Emergency power generation systems. An ANN model is carried out which gives satisfactory working conditions. The cost analysis is being carried out by considering small capacity and micro power production conditions. The efficiency attained during this method of power generation is around 55%. By incorporating large macro energy systems, we can produce more power output and also generate more electrical power. By considering all these factors it can be considered as a very good working model.


Author(s):  
Andrei Granovskiy ◽  
Mikhail Kostege ◽  
Vladislav Krupa ◽  
Sergey Rudenko

At the present time an important aspect of power generation in combined cycle power plants is to keep part load performance of heavy duty gas turbines sufficiently high. Therefore it is a matter of importance to ensure the aerodynamic alignment between the turbine and exhaust diffuser, allowing potential increase in both turbine efficiency and diffuser pressure recovery. The benefit of such alignment could be noticed at numerical analysis accuracy of part-load conditions in particular due to the change in gas flow angle downstream of the turbine and resulting in an incidence on the diffuser struts. This incidence, in its turn, often causes local flow separation and an associated loss increase. This paper presents an integrated approach of the turbine and diffuser aerodynamic design by means of use of a single 3D Navier-Stokes CFD model. This model explores an automatic interface between the turbine and diffuser calculation domains. Furthermore, whilst gas turbine part load performance has been improved thanks to last stage turbine blade redesign, the above-mentioned integrated turbine & diffuser numerical modelling was used as working instrument to reach the optimal solution in terms of flange-to-flange efficiency in a broad operation range. Following test results, comparison against the numerical prediction fully proved the validity of chosen analytical approach.


Sign in / Sign up

Export Citation Format

Share Document