scholarly journals Ground Penetrating Radar as a Functional Tool to Outline the Presence of Buried Waste: A Case Study in South Italy

2021 ◽  
Vol 13 (7) ◽  
pp. 3805
Author(s):  
Carmine Massarelli ◽  
Claudia Campanale ◽  
Vito Felice Uricchio

The ability of the ground penetrating radar (GPR) method as a rapid preliminary survey to detect the presence of illegally buried waste is presented in this paper. The test site is located in the countryside of “Sannicandro di Bari” (Southern Italy) and has a surface area of 1500 m2. A total of five parallel profiles were acquired in 2014 using a geophysical survey system instrument (GSSI) equipped with 400 and 200 MHz antennae in the monostatic configuration. Two of the five profiles were registered in a control area to compare a natural condition to a suspected waste buried zone. As a result of a processing and elaboration workflow, GPR investigations allowed us to interpret the signal qualitatively within a maximum depth of about 3 m, identifying many signal anomalies, whose characteristics can be considered typical of buried waste. The GPR response of the three profiles acquired in the suspected area showed substantial differences not found in the control’s profiles. Anomalies related to the presence of intense scattering, of dome structures not attributable to cavities, but rather to a flattening and compacting of different layers, therefore, less electrically conductive, were identified in the suspected area. The interpretation of the results obtained by the GPR profiles was confirmed by excavations carried out with bulldozers. Large quantities of solid waste illegally buried (e.g., waste deriving from construction and demolition activities, bituminous mixtures, discarded tires, glass, plastic, municipal waste) were revealed in all the sites where anomalies and non-conformities appeared compared to the control natural soil.

2002 ◽  
Vol 26 (2) ◽  
pp. 373-380 ◽  
Author(s):  
J. M. Ucha ◽  
M. Botelho ◽  
G. S. Vilas Boas ◽  
L. P. Ribeiro ◽  
P. S. Santana

Foram estudados nove perfis ao longo de uma toposseqüência sobre os sedimentos do Grupo Barreiras, na Fazenda Rio Negro, município de Entre Rios (BA), utilizando a prospecção eletromagnética por meio do Radar Penetrante no Solo - "Ground-penetrating radar - GPR", objetivando analisar a utilização dessa ferramenta na aquisição de informações sobre as feições que ocorrem no solo, mediante a comparação entre os radargramas obtidos e a descrição pedológica. O equipamento utilizado foi um Geophysical Survey System modelo GPR SR system-2, com antena de 80 MHz. A análise radargramétrica confirmou o aparecimento dos fragipãs e duripãs em profundidade, que ocorrem sempre acompanhados de um processo de transformação dos solos do tipo Latossolo Amarelo e Argissolo Amarelo em Espodossolo. Os padrões de reflexão mostram claramente os domínios dos solos argilosos e dos solos arenosos, com e sem a presença dos horizontes endurecidos.


Plant Methods ◽  
2017 ◽  
Vol 13 (1) ◽  
Author(s):  
Alfredo Delgado ◽  
Dirk B. Hays ◽  
Richard K. Bruton ◽  
Hernán Ceballos ◽  
Alexandre Novo ◽  
...  

2019 ◽  
Vol 38 (6) ◽  
pp. 453-459
Author(s):  
Nectaria Diamanti ◽  
A. Peter Annan

We provide a coherent approach for developing an understanding of how and where ground-penetrating radar (GPR) can be deployed for tunnel detection. While tunnels in general are of interest, the more specific focus is tunnels that are hand dug or created with a minimal amount of equipment and resources for clandestine purposes. Determining whether GPR can be used for tunnel detection is impossible without an in-depth knowledge of the operational environment and constraints. To effectively address the question, we define the general characteristics of clandestine tunnels, discuss how to estimate the responses amplitude, define the dominant noise types associated with GPR data, and point out how those factors are affected by the GPR system. The key aspects are illustrated using a controlled field case study.


2016 ◽  
Vol 62 (236) ◽  
pp. 1008-1020 ◽  
Author(s):  
J.J. LAPAZARAN ◽  
J. OTERO ◽  
A. MARTÍN-ESPAÑOL ◽  
F.J. NAVARRO

ABSTRACTThis is the first (Paper I) of three companion papers focused respectively, on the estimates of the errors in ice thickness retrieved from pulsed ground-penetrating radar (GPR) data, on how to estimate the errors at the grid points of an ice-thickness DEM, and on how the latter errors, plus the boundary delineation errors, affect the ice-volume estimates. We here present a comprehensive analysis of the various errors involved in the computation of ice thickness from pulsed GPR data, assuming they have been properly migrated. We split the ice-thickness error into independent components that can be estimated separately. We consider, among others, the effects of the errors in radio-wave velocity and timing. A novel aspect is the estimate of the error in thickness due to the uncertainty in horizontal positioning of the GPR measurements, based on the local thickness gradient. Another novel contribution is the estimate of the horizontal positioning error of the GPR measurements due to the velocity of the GPR system while profiling, and the periods of GPS refreshing and GPR triggering. Their effects are particularly important for airborne profiling. We illustrate our methodology through a case study of Werenskioldbreen, Svalbard.


2015 ◽  
Vol 19 (3) ◽  
pp. 1125-1139 ◽  
Author(s):  
P. Klenk ◽  
S. Jaumann ◽  
K. Roth

Abstract. High-resolution time-lapse ground-penetrating radar (GPR) observations of advancing and retreating water tables can yield a wealth of information about near-surface water content dynamics. In this study, we present and analyze a series of imbibition, drainage and infiltration experiments that have been carried out at our artificial ASSESS test site and observed with surface-based GPR. The test site features a complicated but known subsurface architecture constructed with three different kinds of sand. It allows the study of soil water dynamics with GPR under a wide range of different conditions. Here, we assess in particular (i) the feasibility of monitoring the dynamic shape of the capillary fringe reflection and (ii) the relative precision of monitoring soil water dynamics averaged over the whole vertical extent by evaluating the bottom reflection. The phenomenology of the GPR response of a dynamically changing capillary fringe is developed from a soil physical point of view. We then explain experimentally observed phenomena based on numerical simulations of both the water content dynamics and the expected GPR response.


Sensors ◽  
2019 ◽  
Vol 19 (1) ◽  
pp. 170 ◽  
Author(s):  
Xianyang Gao ◽  
Frank J. W. Podd ◽  
Wouter Van Verre ◽  
David J. Daniels ◽  
Anthony J. Peyton

Antennas are an important component in ground penetrating radar (GPR) systems. Although there has been much research reported on the design of individual antennas, there is less research reported on the design of the geometry of bi-static antennas. This paper considers the effects of key parameters in the setup of a GPR head consisting of a bi-static bow-tie pair to show the effect of these parameters on the GPR performance. The parameters investigated are the antenna separation, antenna height above the soil, and antenna input impedance. The investigation of the parameters was performed by simulation and measurements. It was found when the bi-static antennas were separated by 7 cm to 9 cm and were operated close to the soil (2 cm to 4 cm), the reflected signal from a near-surface object is relatively unaffected by height variation and object depth. An antenna input impedance of 250 Ω was chosen to feed the antennas to reduce the late-time ringing. Using these results, a new GPR system was designed and then evaluated at a test site near Benkovac, Croatia.


Sign in / Sign up

Export Citation Format

Share Document