scholarly journals Ureolytic MICP-Based Self-Healing Mortar under Artificial Seawater Incubation

2021 ◽  
Vol 13 (9) ◽  
pp. 4834
Author(s):  
Xichen Sun ◽  
Jie Chen ◽  
Siyi Lu ◽  
Miaomiao Liu ◽  
Siyu Chen ◽  
...  

Ureolytic microbial-induced calcium carbonate precipitation (MICP) is a promising green technique for addressing sustainable building concerns by promoting self-healing mortar development. This paper deals with bacteria-based self-healing mortar under artificial seawater incubation for the sake of fast crack sealing with sufficient calcium resource supply. The ureolytic MICP mechanism was explored by morphology characterization and compositional analysis. With polyvinyl alcohol fiber reinforcement, self-healing mortar beams were produced and bent to generate 0.4 mm width cracks at the bottom. The crack-sealing capacity was evaluated at an age of 7 days, 14 days, and 28 days, suggesting a 1-week and 2-week healing time for 7-day- and 14-day-old samples. However, the 28-day-old ones failed to heal the cracks completely. The precipitation crystals filling the crack gap were identified as mainly vaterite with cell imprints. Moreover, fiber surface was found to be adhered by bacterial precipitates indicating fiber–matrix interfacial bond repair.

2021 ◽  
Vol 7 ◽  
Author(s):  
Emanuele Rossi ◽  
Chris M. Vermeer ◽  
Renee Mors ◽  
Robbert Kleerebezem ◽  
Oguzhan Copuroglu ◽  
...  

Bacteria-based self-healing concrete has the ability to heal cracks due to the bacterial conversion of incorporated organic compounds into calcium carbonate. Precipitates seal the cracks, theoretically increasing the service life of constructions. The aim of this paper is to propose a precursor for bacteria-based self-healing concrete derived from organic waste streams, produced is in line with the circular economy principle and ideally more affordable than other substrates. To verify the applicability of the proposed healing agent, some fundamental requirements of the proposed system are studied, such as its influence on functional properties, crack sealing capacity and evidence of bacterial activity in concrete.


2021 ◽  
Author(s):  
Mohammad Mirshahmohammad ◽  
Hamid Rahmani ◽  
Mahdi Maleki-Kakelar ◽  
Abbas Bahari

Abstract Biological methods (adding bacteria to the concrete mixtures) among the most recently investigated procedures increase the durability of concrete and repair concrete cracks. In the present study, different biological methods were used to heal the cracks of concrete and the most suitable method was subsequently introduced. For this purpose, the culture medium and bacterial nutrient inside the concrete mixes and curing solution were separately studied. The effect of air-entrained agent and various sources of calcium salts as the bacterial nutrient on the healing process was also studied. The results showed that the use of bacterial nutrient inside the concrete mixes has an affirmative impact on the mechanical properties and self-healing characteristics of concretes. With the simultaneous use of Sporosarcina pasteurii bacteria and calcium nitrate-urea or calcium chloride-urea as a bacterial nutrient in the concrete mixture, the 28 days compressive strength of concrete increases by 23.4% and 7.5%, respectively, which is due to calcium carbonate precipitation. The use of bacterial cells, nutrients, and culture in the concrete mixture provided the ability to heal wide cracks where the healing time is significantly reduced. On the other hand, separation of the bacterial culture medium slightly reduced the self-healing performance of concrete.


Author(s):  
Mingjun Hu ◽  
Daquan Sun ◽  
Tong Lu ◽  
Jianmin Ma ◽  
Fan Yu

Water damage often occurs on porous asphalt pavement during service life because of the well-developed pore structure. Determining the adhesion and adhesion healing properties of high-viscosity modified asphalt (HVMA) under water condition is beneficial to understand the water damage process of porous asphalt. In this study, the modified binder bond strength test was first conducted to investigate the adhesion property and self-healing behavior of HVMA at different conditions. Then, the surface energy test was carried out to further characterize the differences in adhesion property of HVMA. Moreover, the gel permeation chromatography test and fluorescence microscopic test were used to investigate the influence of chemical composition and polymer morphology on the adhesion property of HVMA. Results show that the presence of water reduces the adhesion property of HVMA. The addition of polymers leads to an increasing adhesion strength and a decreasing self-healing ability of HVMA. The self-healing ability of HVMA improves with the increase of temperature, but also shows a decreased trend when the healing time is long at high-temperature water immersion. The effect of polymers on the adhesion property of asphalt has two aspects. First, the swelling of polymers leads to an increasing content of polar heavy components in HVMA, thus enhancing polarity adsorption between asphalt and aggregate. Moreover, a polymer-centered interfacial diffusion layer can be formed during the adsorption of light components, which increases the overlapping area of structural asphalt between adjacent aggregates. This can also improve the adhesion property at the asphalt–aggregate interface.


Author(s):  
H R Williams ◽  
R S Trask ◽  
I P Bond

Design and certification of novel self-healing aerospace structures was explored by reviewing the suitability of conventional deterministic certification approaches. A sandwich structure with a vascular network self-healing system was used as a case study. A novel probabilistic approach using a Monte Carlo method to generate an overall probability of structural failure yields notable new insights into design of self-healing systems, including a drive for a faster healing time of less than two flight hours. In the case study considered, a mature self-healing system could be expected to reduce the probability of structural failure (compared to a conventional damage-tolerant construction) by almost an order of magnitude. In a risk-based framework this could be traded against simplified maintenance activity (to save cost) and/or increased allowable stress (to allow a lighter structure). The first estimate of the increase in design allowable stresses permitted by a self-healing system is around 8 per cent, with a self-healing system much lighter than previously envisaged. It is thought these methods and conclusions could have wider application to self-healing and conventional high-performance composite structures.


2013 ◽  
Vol 397-400 ◽  
pp. 1893-1896
Author(s):  
Zhong Hua Kong ◽  
Li Gang Wu ◽  
Zai Fei Luo

In the paper hybrid electrode capacitor self-healing circuit is simulated through ATP. It illustrates the equivalent circuit of self-healing is correct, so self-healing process can be analysised quantitatively. The results are that the smaller is the plasma resistance, the larger is self-healing waveform amplitude, The larger is the experimental capacitor, the longer is self-healing time.


2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Abdul Salam Buller ◽  
Fahad ul Rehman Abro ◽  
Kwang-Myong Lee ◽  
Seung Yup Jang

This research is sought to characterize the stimulated autogenous healing of fiber-reinforced mortars that incorporate healing agents such as crystalline admixtures, expansive agents, and geomaterials. The effects of the healing materials on mechanical performance and water permeability were evaluated experimentally. Furthermore, microscopic and microstructural observations were conducted to investigate the characteristics and physical appearance of healing products within healed cracks. Test results are presented herein regarding index of strength recovery (ISR), index of damage recovery (IDR) and index of dissipation energy gain (IDEG) in relation to crack healing, and reduction of water flow rate. The self-healing capability of the mortars was greater in terms of resisting water flow rather than recovering mechanical performance likely because water flow depends on surface crack sealing, whereas mechanical performance depends on bonding capacity as well as full-depth healing of cracks; thus, mechanical performance may further be improved after longer healing duration.


Polymers ◽  
2018 ◽  
Vol 11 (1) ◽  
pp. 41 ◽  
Author(s):  
Ali Berkem ◽  
Ahmet Capoglu ◽  
Turgut Nugay ◽  
Erol Sancaktar ◽  
Ilke Anac

The self-healing ability can be imparted to the polymers by different mechanisms. In this study, self-healing polydimethylsiloxane-graft-polyurethane (PDMS-g-PUR)/Vanadium pentoxide (V2O5) nanofiber supramolecular polymer composites based on a reversible hydrogen bonding mechanism are prepared. V2O5 nanofibers are synthesized via colloidal route and characterized by XRD, SEM, EDX, and TEM techniques. In order to prepare PDMS-g-PUR, linear aliphatic PUR having one –COOH functional group (PUR-COOH) is synthesized and grafted onto aminopropyl functionalized PDMS by EDC/HCl coupling reaction. PUR-COOH and PDMS-g-PUR are characterized by 1H NMR, FTIR. PDMS-g-PUR/V2O5 nanofiber composites are prepared and characterized by DSC/TGA, FTIR, and tensile tests. The self-healing ability of PDMS-graft-PUR and composites are determined by mechanical tests and optical microscope. Tensile strength data obtained from mechanical tests show that healing efficiencies of PDMS-g-PUR increase with healing time and reach 85.4 ± 1.2 % after waiting 120 min at 50 °C. The addition of V2O5 nanofibers enhances the mechanical properties and healing efficiency of the PDMS-g-PUR. An increase of healing efficiency and max tensile strength from 85.4 ± 1.2% to 95.3 ± 0.4% and 113.08 ± 5.24 kPa to 1443.40 ± 8.96 kPa is observed after the addition of 10 wt % V2O5 nanofiber into the polymer.


2016 ◽  
Vol 113 ◽  
pp. 1029-1033 ◽  
Author(s):  
Jin Tang ◽  
Quantao Liu ◽  
Shaopeng Wu ◽  
Qunshan Ye ◽  
Yihan Sun ◽  
...  

2015 ◽  
Author(s):  
Eirini Tziviloglou ◽  
Virginie Wiktor ◽  
Henk Jonkers ◽  
Erik Schlangen

Sign in / Sign up

Export Citation Format

Share Document