scholarly journals Innovative Method for Seismic and Energy Retrofitting of Masonry Buildings

2021 ◽  
Vol 13 (11) ◽  
pp. 6350
Author(s):  
Luca Facconi ◽  
Sara S. Lucchini ◽  
Fausto Minelli ◽  
Benedetta Grassi ◽  
Mariagrazia Pilotelli ◽  
...  

Masonry buildings built in Italy in the 60 s and 70 s of the last century frequently require energy and seismic renovation. To this end, the use of a retrofitting technique based on a multilayer coating may be applied on the building façades in order to improve its seismic and energy performances, leading to the partial or total fulfilment of structural and energy code provisions. The coating consists of a layer of Steel Fiber Reinforced Mortar combined with thermal insulation materials to get a composite package applied on the building façade. After a brief description of the proposed technique, the paper reports the results of seismic and thermal analyses carried out to prove the structural and energy performance of the retrofitting intervention.

2014 ◽  
Vol 564 ◽  
pp. 315-320 ◽  
Author(s):  
Maatouk Khoukhi ◽  
Mahmoud Tahat

The impact of the thermal conductivity (k-value) change of polystyrene insulation material in building envelope due to changes in temperature on the thermal and energy performance of a typical residential building under hot climate is investigated. Indeed, the thermal and energy performance of buildings depends on the thermal characteristics of the building envelope, and particularly on the thermal resistance of the insulation material used. The thermal insulation material which is determined by its thermal conductivity, which describes the ability of heat to flow cross the material in presence of a gradient of temperature, is the main key to assess the performance of the thermal insulation material. When performing the energy analysis or calculating the cooling load for buildings, we use published values of thermal conductivity of insulation materials, which are normally evaluated at 24°C according to the ASTM standards. In reality, thermal insulation in building is exposed to significant and continuous temperature variations, due essentially to the change of outdoor air temperature and solar radiation. Many types of insulation materials are produced and used in Oman, but not enough information is available to evaluate their performance under the prevailing climatic condition. The main objective of this study is to investigate the relationship between the temperature and thermal conductivity of various densities of polystyrene, which is widely used as building insulation material in Oman. Moreover, the impact of thermal conductivity variation with temperature on the envelope-induced cooling load for a simple building model is discussed. This work will serve as a platform to investigate the effect of the operating temperature on thermal conductivity of other building material insulations, and leads to more accurate assessment of the thermal and energy performance of buildings in Oman.


2012 ◽  
Vol 22 (1) ◽  
pp. 131-141
Author(s):  
Qi Yanjun ◽  
Wang Xuegui ◽  
Cui Yu ◽  
Zhang Heping

Author(s):  
Mohanapriya Venkataraman ◽  
Rajesh Mishra ◽  
Jiri Militky ◽  
Dana Kremenakova ◽  
Petru Michal

Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1226
Author(s):  
Beatriz Fraga-De Cal ◽  
Antonio Garrido-Marijuan ◽  
Olaia Eguiarte ◽  
Beñat Arregi ◽  
Ander Romero-Amorrortu ◽  
...  

Prefabricated solutions incorporating thermal insulation are increasingly adopted as an energy conservation measure for building renovation. The InnoWEE European project developed three technologies from Construction and Demolition Waste (CDW) materials through a manufacturing process that supports the circular economy strategy of the European Union. Two of them consisted of geopolymer panels incorporated into an External Thermal Insulation Composite System (ETICS) and a ventilated façade. This study evaluates their thermal performance by means of monitoring data from three pilot case studies in Greece, Italy, and Romania, and calibrated building simulation models enabling the reliable prediction of energy savings in different climates and use scenarios. Results showed a reduction in energy demand for all demo buildings, with annual energy savings up to 25% after placing the novel insulation solutions. However, savings are highly dependent on weather conditions since the panels affect cooling and heating loads differently. Finally, a parametric assessment is performed to assess the impact of insulation thickness through an energy performance prediction and a cash flow analysis.


2021 ◽  
pp. 1-16
Author(s):  
Gehad R. Mohamed ◽  
Rehab K. Mahmoud ◽  
Irene S. Fahim ◽  
Mohamed Shaban ◽  
H. M. Abd El-Salam ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 737
Author(s):  
Indre Siksnelyte-Butkiene ◽  
Dalia Streimikiene ◽  
Tomas Balezentis ◽  
Virgilijus Skulskis

The European Commission has recently adopted the Renovation Wave Strategy, aiming at the improvement of the energy performance of buildings. The strategy aims to at least double renovation rates in the next ten years and make sure that renovations lead to higher energy and resource efficiency. The choice of appropriate thermal insulation materials is one of the simplest and, at the same time, the most popular strategies that effectively reduce the energy demand of buildings. Today, the spectrum of insulation materials is quite wide, and each material has its own specific characteristics. It is recognized that the selection of materials is one of the most challenging and difficult steps of a building project. This paper aims to give an in-depth view of existing multi-criteria decision-making (MCDM) applications for the selection of insulation materials and to provide major insights in order to simplify the process of methods and criteria selection for future research. A systematic literature review is performed based on the Search, Appraisal, Synthesis and Analysis (SALSA) framework and the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. In order to determine which MCDM method is the most appropriate for different questions, the main advantages and disadvantages of different methods are provided.


2019 ◽  
Vol 13 (2) ◽  
pp. 129-133
Author(s):  
Gennadiy Farenyuk

The paper presents the basic methodical principles for the time analysis of the variations of envelope structures’ thermal insulation properties and for the substantiation of the thermal reliability criterion, which should allow the analysis of the actual parameters of heat losses during the operation of buildings. In the paper, the state of the envelope structures thermal failure, the concept of building thermal envelope thermal reliability and the principles of its rating are defined. The physical meaning and basic criterion of the envelope structure thermal reliability are formulated. The application of the thermal reliability criterion allows determining the probable variations in the thermal insulation properties during the building operation and, accordingly, the changes of the building energy performance over time.


Sign in / Sign up

Export Citation Format

Share Document