scholarly journals “Everything Somewhere” or “Something Everywhere”: Examining the Implications of Automated Vehicles’ Deployment Strategies

2021 ◽  
Vol 13 (17) ◽  
pp. 9750
Author(s):  
Pavlos Tafidis ◽  
Haneen Farah ◽  
Tom Brijs ◽  
Ali Pirdavani

“Everything somewhere” or “something everywhere” is the classic dilemma concerning the development and implementation of the future generation of vehicles, i.e., automated vehicles (AVs). Both strategies include diverse policy options that could significantly impact road networks’ planning, design, operation, and utilization. Until now, no significant research has been conducted concerning their implications. In this paper, we aim to examine how ready the current physical infrastructure is by identifying the requirements of each strategy and then applying them in a common type of intersection. The study’s findings demonstrate that AVs’ performance can be affected by policy implementation decisions and adds further weight to the argument of AVs separation or no-separation from no-AVs traffic. Furthermore, the insignificant improvements in traffic performance imply the low readiness of the current road networks in urban areas to accommodate the new technology. This study contributes to determining that research on the readiness of the road infrastructure and the deployment of AVs in urban areas is inevitable. It also identifies that roads’ geometric design can dramatically affect AVs’ operation and the difficulties of implementing dedicated lanes in urban areas due to space availability.

2019 ◽  
Vol 20 (3) ◽  
pp. 269-278 ◽  
Author(s):  
Abebe Dress Beza ◽  
Mohammad Maghrour Zefreh

Abstract Automated vehicles (AVs) are one of the emerging technologies that can perform the driving task themselves. The market penetration of AVs is expected to get growth in the close future. Therefore, it is crucial to have an overall clue on how they play the role in the road transportation sector. Automation might be assumed to have a beneficial impact on many aspects related to road transportation. The current paper attempts to investigate this rough assumption by reviewing the literature on the potential effects of automated vehicles on road transportation. A comprehensive look at the overall potential effects of automated vehicles will show the entire picture, and not just a cropped portion of that, to the researchers, decision makers, and practitioners and helps them to identify the negative and positive effects as well as challenges and uncertainties towards this new technology. In this paper, literature findings on the potential effects of automated vehicles on traffic flow, pedestrians mobility, travel demand and travel pattern, safety and security, and energy consumption and emissions are reviewed and discussed. According to the literature, it is concluded that AVs, as their market penetration increases, promisingly improve the capacity of a road network, eliminates human driver errors, and provide better mobility for groups of people who are currently facing travel-restriction conditions. However, the long-term effects of AVs especially on energy consumption, emission, pedestrian interaction, safety and security has uncertainty due to the complexity of predicting the future mobility pattern.


Safety ◽  
2019 ◽  
Vol 5 (3) ◽  
pp. 57 ◽  
Author(s):  
Pavlos Tafidis ◽  
Ali Pirdavani ◽  
Tom Brijs ◽  
Haneen Farah

Automated vehicles (AVs) are expected to assist in decreasing road traffic fatalities, particularly among passenger cars. However, until now limited research has been conducted on how they will impact the safety of vulnerable road users (VRUs) (i.e., cyclists and pedestrians). Therefore, there is a clear need to start taking into account the interactions between AVs and VRUs as an integrated element of the transport network, especially in urban areas where they are dominant. The objective of this study is to verify whether the anticipated implementation of AVs can actually improve cyclists’ safety. For this purpose, the microscopic traffic flow simulation software PTV Vissim combined with the surrogate safety assessment model (SSAM) were utilized. The road network used for this analysis was generated based on a real study case in a medium-sized city in Belgium, where narrow streets in the city center are shared on many occasions between vehicles and cyclists. The findings of the analysis show a notable reduction in the total number of conflicts between cars, but also between cars and cyclists, compared to the current situation, assuming a 100% market penetration scenario for AVs. Moreover, the severity level of conflicts also decreased as a result of the lack of human-driven vehicles in the traffic streams.


2019 ◽  
Vol 272 ◽  
pp. 01038
Author(s):  
C Withanage ◽  
D Lakmal ◽  
M Hansini ◽  
K Kankanamge ◽  
Y Witharanage ◽  
...  

In today’s world, the traffic volume on urban road networks is multiplying rapidly due to the heavy usage of vehicles and mobility on demand services. Migration of people towards urban areas result in increasing size and complexity of urban road networks. When handling such complex traffic systems, partitioning the road network into multiple sub-regions and managing the identified sub regions is a popular approach. In this paper, we propose an algorithm to identify sub-regions of a road network that exhibit homogeneous traffic flow patterns. In a stage wise manner, we model the road network graph by using taxi-trip data obtained on the selected region. Then, we apply the proposed modified multilevel kway partitioning algorithm to obtain optimal number of partitions from the developed road graph. An interesting feature of this algorithm is, resulting partitions are geographically connected and consists minimal interpartition trip flow. Our results show that the proposed algorithm outperforms state-of-the-art multilevel partitioning algorithms for tripbased road networks. By this research, we demonstrate the ability of road network partitioning using trip data while preserving the partition homogeneity and connectivity.


Author(s):  
Thierry Brenac

This paper deals with safety at horizontal curves on two-lane roads outside urban areas and the way the road design standards of different European countries account for this safety aspect. After a review of some research results, the main aspects of curve geometry and the curve's place in the horizontal alignment are analyzed. The main conclusions are that the traditional design speed approach is insufficient and that formal complementary rules in road design standards, especially to improve compatibility between successive elements of the alignment, must be introduced. If such complementary rules already exist in some national standards, they are neither frequent nor homogeneous throughout the different countries, and it seems that they are not based on sufficiently developed knowledge.


Author(s):  
Tianpei Tang ◽  
Senlai Zhu ◽  
Yuntao Guo ◽  
Xizhao Zhou ◽  
Yang Cao

Evaluating the safety risk of rural roadsides is critical for achieving reasonable allocation of a limited budget and avoiding excessive installation of safety facilities. To assess the safety risk of rural roadsides when the crash data are unavailable or missing, this study proposed a Bayesian Network (BN) method that uses the experts’ judgments on the conditional probability of different safety risk factors to evaluate the safety risk of rural roadsides. Eight factors were considered, including seven factors identified in the literature and a new factor named access point density. To validate the effectiveness of the proposed method, a case study was conducted using 19.42 km long road networks in the rural area of Nantong, China. By comparing the results of the proposed method and run-off-road (ROR) crash data from 2015–2016 in the study area, the road segments with higher safety risk levels identified by the proposed method were found to be statistically significantly correlated with higher crash severity based on the crash data. In addition, by comparing the respective results evaluated by eight factors and seven factors (a new factor removed), we also found that access point density significantly contributed to the safety risk of rural roadsides. These results show that the proposed method can be considered as a low-cost solution to evaluating the safety risk of rural roadsides with relatively high accuracy, especially for areas with large rural road networks and incomplete ROR crash data due to budget limitation, human errors, negligence, or inconsistent crash recordings.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15 ◽  
Author(s):  
Tinggui Chen ◽  
Shiwen Wu ◽  
Jianjun Yang ◽  
Guodong Cong ◽  
Gongfa Li

It is common that many roads in disaster areas are damaged and obstructed after sudden-onset disasters. The phenomenon often comes with escalated traffic deterioration that raises the time and cost of emergency supply scheduling. Fortunately, repairing road network will shorten the time of in-transit distribution. In this paper, according to the characteristics of emergency supplies distribution, an emergency supply scheduling model based on multiple warehouses and stricken locations is constructed to deal with the failure of part of road networks in the early postdisaster phase. The detailed process is as follows. When part of the road networks fail, we firstly determine whether to repair the damaged road networks, and then a model of reliable emergency supply scheduling based on bi-level programming is proposed. Subsequently, an improved artificial bee colony algorithm is presented to solve the problem mentioned above. Finally, through a case study, the effectiveness and efficiency of the proposed model and algorithm are verified.


Electronics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 193
Author(s):  
Mohamed Ben bezziane ◽  
Ahmed Korichi ◽  
Chaker Abdelaziz Kerrache ◽  
Mohamed el Amine Fekair

As a promising topic of research, Vehicular Cloud (VC) incorporates cloud computing and ad-hoc vehicular network (VANET). In VC, supplier vehicles provide their services to consumer vehicles in real-time. These services have a significant impact on the applications of internet access, storage and data. Due to the high-speed mobility of vehicles, users in consumer vehicles need a mechanism to discover services in their vicinity. Besides this, quality of service varies from one supplier vehicle to another; thus, consumer vehicles attempt to pick out the most appropriate services. In this paper, we propose a novel protocol named RSU-aided Cluster-based Vehicular Clouds protocol (RCVC), which constructs the VC using the Road Side Unit (RSU) directory and Cluster Head (CH) directory to make the resources of supplier vehicles more visible. While clusters of vehicles that move on the same road form a mobile cloud, the remaining vehicles form a different cloud on the road side unit. Furthermore, the consumption operation is achieved via the service selection method, which is managed by the CHs and RSUs based on a mathematical model to select the best services. Simulation results prove the effectiveness of our protocol in terms of service discovery and end-to-end delay, where we achieved service discovery and end-to-end delay of 3 × 10−3 s and 13 × 10−2 s, respectively. Moreover, we carried out an experimental comparison, revealing that the proposed method outperformed several states of the art protocols.


Author(s):  
Jens Alm ◽  
Alexander Paulsson ◽  
Robert Jonsson

There is a growing maintenance debt of ageing and critical infrastructures in many municipalities in European welfare states. In this article, we use the multidimensional concept of local capacity as a point of departure to analyse how and in what ways Swedish municipalities work with the routine maintenance of infrastructures, including municipal road networks as well as water and sewage systems. For the road networks, maintenance is generally outsourced to contractors and there is also a large degree of tolerance for various standards on different road segments within and between the municipalities. Less used road segments are not as prioritised as those with heavy traffic. For the water and sewage systems, in-house technical capacity is needed as differences in water quality are not tolerated. Economies of scale mean that in-house capacity is translated into the creation of inter-municipal bodies. As different forms of capacities tend to reinforce each other, municipal capacity builds up over time in circular movements. These results add knowledge to current research by pointing to the ways municipalities are overcoming a run-to-failure mentality by building capacity to pay off the infrastructural maintenance debt.


Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 378
Author(s):  
Taeyong Kwon ◽  
Seongsim Yoon ◽  
Sanghoo Yoon

Uncertainty in the rainfall network can lead to mistakes in dam operation. Sudden increases in dam water levels due to rainfall uncertainty are a high disaster risk. In order to prevent these losses, it is necessary to configure an appropriate rainfall network that can effectively reflect the characteristics of the watershed. In this study, conditional entropy was used to calculate the uncertainty of the watershed using rainfall and radar data observed from 2018 to 2019 in the Goesan Dam and Hwacheon Dam watersheds. The results identified radar data suitable for the characteristics of the watershed and proposed a site for an additional rainfall gauge. It is also necessary to select the location of the additional rainfall gauged by limiting the points where smooth movement and installation, for example crossing national borders, are difficult. The proposed site emphasized accessibility and usability by leveraging road information and selecting a radar grid near the road. As a practice result, the uncertainty of precipitation in the Goesan and Hwacheon Dam watersheds could be decreased by 70.0% and 67.9%, respectively, when four and three additional gauge sites were installed without any restriction. When these were installed near to the road, with five and four additional gauge sites, the uncertainty in the Goesan Dam and Hwacheon Dam watersheds were reduced by up to 71.1%. Therefore, due to the high degree of uncertainty, it is necessary to measure precipitation. The operation of the rainfall gauge can provide a smooth site and configure an appropriate monitoring network.


2020 ◽  
Vol 12 (5) ◽  
pp. 1858
Author(s):  
Daniel Schmitt ◽  
Chisenga Muyoya

The number of scholars working on transition concepts in the Global South is rapidly increasing. In this context, a substantial amount of research output particularly focusses on niches and how they affect transition towards sustainability in a wider framework of the multi-level-perspective. At the same time, there is a growing interest in digital technology and its effect on sustainability challenges. In this article, we combine the two fields, and by utilizing social media data, we create an innovative network science approach to analyze the production environment of digital innovations in Africa. We focus on three innovation hubs that we conceptualize as niches and innovation intermediaries that not only create communities to develop, test and implement new technology but also function as networks to discuss and form new ideas around innovations. Our key findings show how local communities are embedded in larger innovation structures. The connections between local stakeholders and global actors are predominantly created through bridge actors, who hold key positions in their communities. With tools from network science, we demonstrate that these linking elements can regulate and steer discussions and therefore, strongly influence digital niche environments. Utilizing geographical location data, we can also see that the online space of technological innovations in Africa is heavily cantered in urban areas.


Sign in / Sign up

Export Citation Format

Share Document