scholarly journals Influence of Land Use Change on the Surface Albedo and Climate Change in the Qinling-Daba Mountains

2021 ◽  
Vol 13 (18) ◽  
pp. 10153
Author(s):  
Fang Zhao ◽  
Xincan Lan ◽  
Wuyang Li ◽  
Wenbo Zhu ◽  
Tianqi Li

Land use changes affect the surface radiative budget and energy balance by changing the surface albedo, which generates radiative forcing, impacting the regional and global climate. To estimate the effect of land use changes on the surface albedo and climate change in a mountainous area with complex terrain, we obtained MODIS data, identified the spatial–temporal characteristics of the surface albedo caused by land use changes, and then calculated the radiative forcing based on solar radiative data and the surface albedo in the Qinling-Daba mountains from 2000 to 2015. The correlation between the land use changes and the radiative forcing was analyzed to explore the climate effects caused by land use changes on a kilometer-grid scale in the Qinling-Daba mountains. Our results show that the primarily land use changes were a decrease in the cultivated land area and an increase in the construction land area, as well as other conversions between six land use types from 2000 to 2015. The land use changes led to significant changes in the surface albedo. Meanwhile, the radiative forcing caused by the land use had different magnitudes, strengths, and occurrence ranges, resulting in both warming and cooling climate change effects.

2011 ◽  
Vol 02 (01) ◽  
pp. 27-51 ◽  
Author(s):  
DAVID HAIM ◽  
RALPH J. ALIG ◽  
ANDREW J. PLANTINGA ◽  
BRENT SOHNGEN

An econometric land-use model is used to project regional and national land-use changes in the United States under two IPCC emissions scenarios. The key driver of land-use change in the model is county-level measures of net returns to five major land uses. The net returns are modified for the IPCC scenarios according to assumed trends in population and income and projections from integrated assessment models of agricultural prices and agricultural and forestry yields. For both scenarios, we project large increases in urban land by the middle of the century, while the largest declines are in cropland area. Significant differences among regions in the projected patterns of land-use change are evident, including an expansion of forests in the Mountain and Plains regions with declines elsewhere. Comparisons to projections with no climate change effects on prices and yields reveal relatively small differences. Thus, our findings suggest that future land-use patterns in the U.S. will be shaped largely by urbanization, with climate change having a relatively small influence.


2013 ◽  
Vol 12 ◽  
pp. 1-9
Author(s):  
Rabindra Man Tamrakar

Although Nepal contributes very low emissions of Greenhouse Gases (GHGs) compared to the developed nations, it is the fourth most vulnerable country in the world due to the effects of climate change. These effects have already lead to more natural disasters, loss of biodiversity, increase in mountain snow melt, uncertainty in precipitation, shortage of food, water and energy etc. resulting in devastating impacts on the life of people living in both mountain and plain areas. Climate change therefore is the vital issue in the country. Understanding the potential impacts of climate change, Government of Nepal since last two decades has taken significant initiatives in response to the effects of climate change including the participations in international conventions, the approval of Climate Change National Policy 2067 (2010), and establishment of a high level Climate Change Council (CCC) under the chairmanship of the Rt. Hon'ble Prime Minister of Nepal. In addition, The Ministry of Environment, Science and Technology (MoEST), being the National Designated Authority (DNA) in Nepal for United Nation Framework Convention on Climate Change (UNFCCC), has executed several programmes and projects related to mitigation and adaptation of climate change effects including Clean Development Mechanism (CDM) projects and National Adaptation Programme of Action (NAPA). International Nongovernmental Organizations such as UNFCCC, DANIDA, DFID, UNEP, UNDP, UN-HABITAT, World Bank, Food and Agricultural Organization (FAO), Asian Development Bank (ADB) etc. as well have carried out numerous climate change projects and activities in Nepal in conjunction with various government agencies.Studies have revealed that the major sources of GHGs are from the burning of fossil fuel (75%), land use changes (20%), and other sources (5%). It has also been postulated that the effects of climate change can be significantly reduced through the implementation of land use policy and activities. Ministry of Land Reform and Management (MoLRM), Government of Nepal (GoN) is the central agency in Nepal dealing with the formulation and implementation of land related policies and activities in the country. MoLRM has commenced to formulate the National Land Policy and has planned to complete it at the end of fiscal year 069/70. This policy will definitely assist in mitigating the effects of climate change in the country. Another essential policy for the mitigation of the impacts of climate change in the country is National Land Use Policy which was prepared by MoLRM and has been approved by GoN in 2012, but it is yet to be implemented. One of the important policies that it has focussed on for the mitigation of climate change effects is to increase the present forest coverage to 40% of the total area of the country while protecting the government land by forestation and plantation programmes on degraded lands. Nepalese Journal on Geoinformatics -12, 2070 (2013AD): 1-9


2003 ◽  
Vol 16 (10) ◽  
pp. 1511-1524 ◽  
Author(s):  
Gunnar Myhre ◽  
Arne Myhre

Abstract A radiative transfer model has been used for estimating the radiative forcing due to land-use changes. Five global datasets for current vegetation cover and three datasets of preagriculture vegetation have been adopted. The vegetation datasets have been combined with three datasets for surface albedo values. A distinct feature in all the calculations is the negative radiative forcing at the northern midlatitudes due to the conversion of forest to cropland. Regionally the radiative forcing is likely to be among the strongest of the climate forcing mechanisms. A wider range is estimated for the global mean radiative forcing due to land-use changes than previously reported. The single most important factor yielding the large range in estimated forcing is the cropland surface albedo values. This underlines the importance of characterizing surface albedo correctly.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
I. Åhlén ◽  
G. Vigouroux ◽  
G. Destouni ◽  
J. Pietroń ◽  
N. Ghajarnia ◽  
...  

AbstractAssessments of ecosystem service and function losses of wetlandscapes (i.e., wetlands and their hydrological catchments) suffer from knowledge gaps regarding impacts of ongoing hydro-climatic change. This study investigates hydro-climatic changes during 1976–2015 in 25 wetlandscapes distributed across the world’s tropical, arid, temperate and cold climate zones. Results show that the wetlandscapes were subject to precipitation (P) and temperature (T) changes consistent with mean changes over the world’s land area. However, arid and cold wetlandscapes experienced higher T increases than their respective climate zone. Also, average P decreased in arid and cold wetlandscapes, contrarily to P of arid and cold climate zones, suggesting that these wetlandscapes are located in regions of elevated climate pressures. For most wetlandscapes with available runoff (R) data, the decreases were larger in R than in P, which was attributed to aggravation of climate change impacts by enhanced evapotranspiration losses, e.g. caused by land-use changes.


2018 ◽  
Vol 115 (52) ◽  
pp. 13192-13197 ◽  
Author(s):  
D. M. Murphy ◽  
A. R. Ravishankara

Different regions of the world have had different historical patterns of emissions of carbon dioxide, other greenhouse gases, and aerosols as well as different land-use changes. One can estimate the net cumulative contribution by each region to the global mean radiative forcing due to past greenhouse gas emissions, aerosol precursors, and carbon dioxide from land-use changes. Several patterns stand out from such calculations. Some regions have had a common historical pattern in which the short-term offsets between the radiative forcings from carbon dioxide and sulfate aerosols temporarily led to near-zero radiative forcing during periods of exponential emissions growth with few emission controls. This happened for North America and Europe in the mid-20th century and China in the 1990s and 2000s. However, these same periods lead to a commitment to future radiative forcing from the carbon dioxide and other greenhouse gases that stay in the atmosphere long after the aerosols. For every region, this commitment to future radiative forcing (2018–2100) from emissions already in the atmosphere is larger than the cumulative radiative forcing to date (1900–2017). This comparison again highlights how the full radiative forcing from greenhouse gases is unmasked once the aerosol emissions are reduced to improve air quality. The relative contributions from various regions to global climate forcing depends more on the time the contributions are compared (e.g., now or 2100) and future development scenarios than on whether cumulative radiative forcing, ocean heat content, or temperature is used to compare regional contributions.


2020 ◽  
Author(s):  
Xini Zha

<p><br>Change detection and attribution of water cycle are increasingly crucial for promoting society‘s capacity to embed adaptation planning confronting both climate change and anthropogenic forces at catchment scale. Nevertheless, current researches either neglect the difference between internal climate variability and climate change (including internal climate variability and external radiative forcing) or don’t consider different anthropogenic activities (e.g. land use changes, reservoir operation and water consumption). In this study, a new stepwise multiply scenarios approach (SMSA), using model simulations of the Fifth Coupled Model Intercomparison Project (CMIP5) archive and the new generation Soil and Water Assessment Tool (SWAT), dubbed SWAT+ model to identify and quantify influence of total five different factors (internal climate variability, external radiative forcing, land use changes, reservoir operation and water consumption) on inter-annual and seasonal hydrological alteration. Application of this approach to a perennial basin in Southeast China highlights the role of reservoir operation. </p>


2021 ◽  
Vol 13 (7) ◽  
pp. 4079
Author(s):  
Yongkang Zhou ◽  
Xiaoyao Zhang ◽  
Hu Yu ◽  
Qingqing Liu ◽  
Linlin Xu

Global climate change and land use change arising from human activities affect the ecosystem service values (ESVs). Such impacts have increasingly become significant, especially in the Qinghai–Tibet Plateau (QTP). Major factors impeding the construction of China’s “ecological security barrier” are shifts in land-use patterns under rapid urbanization, irrational crop and animal husbandry activities, and tourism. In the present study, land use changes in the QTP in recent years were analyzed to determine their impacts on ESVs, followed by simulations of the interactive and evolutionary relationships between land use and ESVs under two scenarios: natural development scenarios and ecological protection scenarios. According to the results, the QTP land-use structure has a small change, and the main land use type is alpine grassland, followed by bare land and woodland. The stability of the major land use types is the key factor responsible for the overall increasing ESV trend. Different regions on the QTP had substantially varied ESVs. The northwest and southeast regions are mostly bare land, which is a concentrated area of low value of ecosystem services. A variety of land use types including grassland and woodland have been found in the humid and semi-humid areas of the central region, so the high value of ecosystem services is concentrated in this area to form a hot spot, with a Z value of 0.63–2.84. Simulations under the natural development and ecological protection scenarios revealed that land use changes guided by ecological policies were more balanced and the associated ESVs were relatively higher than those under the natural development scenario. Under a global climate change context, human activities on the QTP should be better managed. Sustainable development in the region could be facilitated by ensuring synchronization between resource availability and adopted socioeconomic activities.


Land ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 627
Author(s):  
Duong H. Nong ◽  
An T. Ngo ◽  
Hoa P. T. Nguyen ◽  
Thuy T. Nguyen ◽  
Lan T. Nguyen ◽  
...  

We analyzed the agricultural land-use changes in the coastal areas of Tien Hai district, Thai Binh province, in 2005, 2010, 2015, and 2020, using Landsat 5 and Landsat 8 data. We used the object-oriented classification method with the maximum likelihood algorithm to classify six types of land uses. The series of land-use maps we produced had an overall accuracy of more than 80%. We then conducted a spatial analysis of the 5-year land-use change using ArcGIS software. In addition, we surveyed 150 farm households using a structured questionnaire regarding the impacts of climate change on agricultural productivity and land uses, as well as farmers’ adaptation and responses. The results showed that from 2005 to 2020, cropland decreased, while aquaculture land and forest land increased. We observed that the most remarkable decreases were in the area of rice (485.58 ha), the area of perennial crops (109.7 ha), and the area of non-agricultural land (747.35 ha). The area of land used for aquaculture and forest increased by 566.88 ha and 772.60 ha, respectively. We found that the manifestations of climate change, such as extreme weather events, saltwater intrusion, drought, and floods, have had a profound impact on agricultural production and land uses in the district, especially for annual crops and aquaculture. The results provide useful information for state authorities to design land-management strategies and solutions that are economic and effective in adapting to climate change.


Sign in / Sign up

Export Citation Format

Share Document