scholarly journals Red Mud-Blast Furnace Slag-Based Alkali-Activated Materials

2021 ◽  
Vol 13 (20) ◽  
pp. 11298
Author(s):  
Alessio Occhicone ◽  
Mira Vukčević ◽  
Ivana Bosković ◽  
Claudio Ferone

The aluminum Bayer production process is widespread all over the world. One of the waste products of the Bayer process is a basic aluminosilicate bauxite residue called red mud. The aluminosilicate nature of red mud makes it suitable as a precursor for alkali-activated materials. In this work, red mud was mixed with different percentages of blast furnace slag and then activated by sodium silicate solution at different SiO2/Na2O ratios. Obtained samples were characterized by chemical–physical analyses and compressive strength determination. Very high values of compressive strength, up to 50 MPa, even for high percentage of red mud in the raw mixture (70 wt.% of RM in powder mixture), were obtained. In particular, the higher compressive strength was measured for cubic samples containing 50 wt.% of RM, which showed a value above 70 MPa. The obtained mixtures were characterized by no or scarce environmental impact and could be used in the construction industry as an alternative to cementitious and ceramic materials.

2018 ◽  
Vol 163 ◽  
pp. 06001
Author(s):  
Miroslav Komljenović ◽  
Nataša Džunuzović ◽  
Violeta Nikolić

Durability of binders, mortars and concretes in aggressive environments is of crucial importance for their commercial application. In this paper the resistance to external sulfate attack of two different alkaliactivated binders (AABs), based either on blast furnace slag (BFS) or fly ash/blast furnace slag (FA/BFS) blend, was compared with two different commercially available Portland cement (CEM II) blended either with BFS or with FA and BFS. Comparison of sulfate resistance was based on compressive strength testing (the loss of strength) of mortar samples exposed to sodium sulfate attack up to 180 days and samples cured under controlled conditions for the same period of time. Furthermore, the evolution of microstructure of alkali-activated binders and pH of sodium silicate solution during testing were also analyzed. Despite different gel chemistry being involved, both alkali-activated binders based either on BFS or FA/BFS blend showed excellent resistance to external sulfate attack and even better than selected Portland cements tested under the same experimental conditions.


2017 ◽  
Vol 68 (6) ◽  
pp. 1182-1187
Author(s):  
Ilenuta Severin ◽  
Maria Vlad

This article presents the influence of the properties of the materials in the geopolymeric mixture, ground granulated blast furnace slag (GGBFS) + wheat straw ash (WSA) + uncalcined red mud (RMu), and ground granulated blast furnace slag + wheat straw ash + calcined red mud (RMc), over the microstructure and mechanical properties of the synthesised geopolymers. The activation solutions used were a NaOH solution with 8M concentration, and a solution realised from 50%wt NaOH and 50%wt Na2SiO3. The samples were analysed: from the microstructural point of view through SEM microscopy; the chemical composition was determined through EDX analysis; and the compressive strength tests was done for samples tested at 7 and 28 days, respectively. The SEM micrographies of the geopolymers have highlighted a complex structure and an variable compressive strength. Compressive strength varied from 24 MPa in the case of the same recipe obtained from 70% of GGBFS + 25% WSA +5% RMu, alkaline activated with NaOH 8M (7 days testing) to 85 MPa in the case of the recipe but replacing RMu with RMc with calcined red mud, alkaline activated with the 50%wt NaOH and 50%wt Na2SiO3 solution (28 days testing). This variation in the sense of the rise in compressive strength can be attributed to the difference in reactivity of the materials used in the recipes, the curing period, the geopolymers structure, and the presence of a lower or higher rate of pores, as well as the alkalinity and the nature of the activation solutions used.


Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1134 ◽  
Author(s):  
Ilda Tole ◽  
Magdalena Rajczakowska ◽  
Abeer Humad ◽  
Ankit Kothari ◽  
Andrzej Cwirzen

An efficient solution to increase the sustainability of building materials is to replace Portland cement with alkali-activated materials (AAM). Precursors for those systems are often based on water-cooled ground granulated blast furnace slags (GGBFS). Quenching of blast furnace slag can be done also by air but in that case, the final product is crystalline and with a very low reactivity. The present study aimed to evaluate the cementitious properties of a mechanically activated (MCA) air-cooled blast furnace slag (ACBFS) used as a precursor in sodium silicate alkali-activated systems. The unreactive ACBFS was processed in a planetary ball mill and its cementing performances were compared with an alkali-activated water-cooled GGBFS. Mixes based on mechanically activated ACBFS reached the 7-days compressive strength of 35 MPa and the 28-days compressive strength 45 MPa. The GGBFS-based samples showed generally higher compressive strength values.


2011 ◽  
Vol 287-290 ◽  
pp. 1275-1279
Author(s):  
Yong Jia He ◽  
Lin Nu Lu ◽  
Shu Guang Hu

Compound binding material was prepared by the alkali activation of metakaolin and ground granulated blast furnace slag. Hydration product components, microstructure and mechanical properties of the hardened paste were investigated by IR, XRD, SEM, MIP, and compressive strength measurement. Results indicated that hydration products included C-S-H and geopolymer, and both of them were amorphous although there were differences in their structure and morphology. When the dosage of slag was less than 50%, the compressive strength of hardened paste increased as the dosage increased, which was mainly because C-S-H produced by the reaction of GGBFS and alkali filled void in geopolymer phase, and part of unreacted slag particles acting as microaggregate to prevent from extension of microcrack in the hardened paste, so the porosity of hardened paste decreased and compressive strength increased.


Materials ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2286
Author(s):  
Taewan Kim ◽  
Sungnam Hong ◽  
Choonghyun Kang

This study investigates the characteristics of alkali-activated slag cement using aluminium sulphate (ALS) as an activator. The alkalis NaOH and Na2SiO3 were used as additional activators (denoted by alkali) at 5% and 10% of the weight of the ground granulated blast furnace slag (GGBFS). Three types of activators were considered. The first was when ALS was used alone. For the second, ALS and 5% alkali were used together. The third was when ALS and 10% alkali were used. ALS was used at concentrations of 2%, 4%, 6%, 8%, and 10% based on binder weight. Experimental results show that when ALS was used as a sole activator, the activity of GGBFS was low and its strength was below 1 MPa. However, compressive strength was improved when 5% or 10% alkali and ALS were used at the same time. This was effective at improving mechanical and microstructural performance when used with an additional activator capable of forming a more alkaline environment than using ALS as a sole activator.


2015 ◽  
Vol 754-755 ◽  
pp. 300-304 ◽  
Author(s):  
Aimi Noorliyana Hashim ◽  
Kamarudin Hussin ◽  
Noorzahan Begum ◽  
Mohd Mustafa Al Bakri Abdullah ◽  
Kamrosni Abdul Razak ◽  
...  

Energy saving in building technology is among the most critical problems in the world. Thus it is a need to develop sustainable alternatives to conventional concrete utilizing more environmental friendly materials. One of the possibilities to work out is the massive usage of industrial wastes like ground granulated blast furnace slag (GGBS) to turn them to useful environmental friendly and technologically advantageous cementitious materials. In this study, ground granulated blast furnace slag (GGBS) is used to produce of alkali activated slag (AAS) mortar with the effect of alkaline activator concentration. Alkali activated slag (AAS) mortar is accelerated using alkaline solution of sodium silicate mixed with sodium hydroxide. The fixed ratio of sodium silicate to sodium hydroxide is 1.7 and the concentration of sodium hydroxide is varied from 6M to 12M. Concentration of 10M NaOH promotes the best properties of mortar by achieving the greatest compressive strength. Substitution of mineral admixture also influences strength performance of AAS mortars. The mortar with 20% calcium carbonate demonstrates the maximum compressive strength. The used of alkaline activation system is the best method to prepare industrial byproduct concrete. Moreover, alkali activated product itself gains superior properties which lead to the system become the most interesting method to produce sustainable concrete.


Minerals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 337 ◽  
Author(s):  
Juan Cosa ◽  
Lourdes Soriano ◽  
María Borrachero ◽  
Lucía Reig ◽  
Jordi Payá ◽  
...  

The properties of a binder developed by the alkali-activation of a single waste material can improve when it is blended with different industrial by-products. This research aimed to investigate the influence of blast furnace slag (BFS) and fly ash (FA) (0–50 wt %) on the microstructure and compressive strength of alkali-activated ceramic sanitaryware (CSW). 4 wt % Ca(OH)2 was added to the CSW/FA blended samples and, given the high calcium content of BFS, the influence of BFS was analyzed with and without adding Ca(OH)2. Mortars were used to assess the compressive strength of the blended cements, and their microstructure was investigated in pastes by X-ray diffraction, thermogravimetry, and field emission scanning electron microscopy. All the samples were cured at 20 °C for 28 and 90 days and at 65 °C for 7 days. The results show that the partial replacement of CSW with BFS or FA allowed CSW to be activated at 20 °C. The CSW/BFS systems exhibited better mechanical properties than the CSW/FA blended mortars, so that maximum strength values of 54.3 MPa and 29.4 MPa were obtained in the samples prepared with 50 wt % BFS and FA, respectively, cured at 20 °C for 90 days.


Sign in / Sign up

Export Citation Format

Share Document