scholarly journals Reliability Evaluation of Lithium-Ion Batteries for E-Mobility Applications from Practical and Technical Perspectives: A Case Study

2021 ◽  
Vol 13 (21) ◽  
pp. 11688
Author(s):  
Foad H. Gandoman ◽  
Emad M. Ahmed ◽  
Ziad M. Ali ◽  
Maitane Berecibar ◽  
Ahmed F. Zobaa ◽  
...  

Evaluation of the reliability of the components of electric vehicles (EVs) has been studied by international research centers, industry, and original equipment manufacturers over the last few years. Li-ion batteries are the main sensitive component of an EV’s E-power train. In other words, the Li-ion batteries for electromobility applications are one of the main components of an EV, which should be reliable and safe over the operational lifetime of the EV. Thus, investigating how to assess the reliability of the Li-ion battery has been a highly recommended task in most European projects. Moreover, with the increase in the number of new EVs made by European car companies, there has been a competition for market acquisition by these companies to win over customers and gain more market share. This article presents a comprehensive overview of the evaluation of the reliability of Li-ion batteries from practical and technical perspectives. Moreover, a case study for assessing reliability from practical and technical perspectives has been investigated.

Author(s):  
Gearoid A Collins ◽  
Hugh Geaney ◽  
Kevin Michael Ryan

Li-ion batteries (LIBs) have become critical components in the manufacture of electric vehicles (EV) as they offer the best all-round performance compared to competing battery chemistries. However, LIB performance at...


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1074 ◽  
Author(s):  
Yu Miao ◽  
Patrick Hynan ◽  
Annette von Jouanne ◽  
Alexandre Yokochi

Over the past several decades, the number of electric vehicles (EVs) has continued to increase. Projections estimate that worldwide, more than 125 million EVs will be on the road by 2030. At the heart of these advanced vehicles is the lithium-ion (Li-ion) battery which provides the required energy storage. This paper presents and compares key components of Li-ion batteries and describes associated battery management systems, as well as approaches to improve the overall battery efficiency, capacity, and lifespan. Material and thermal characteristics are identified as critical to battery performance. The positive and negative electrode materials, electrolytes and the physical implementation of Li-ion batteries are discussed. In addition, current research on novel high energy density batteries is presented, as well as opportunities to repurpose and recycle the batteries.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2638 ◽  
Author(s):  
Daniele Stampatori ◽  
Pier Paolo Raimondi ◽  
Michel Noussan

Lithium ion batteries are experiencing an increased success thanks to their interesting performances, in particular for electric vehicles applications. Their continuous technological improvements in the last years are providing higher energy density and lower manufacturing costs. However, the environmental performance of their supply chain is of paramount importance to guarantee a cleaner alternative to fossil-based solutions on the entire life cycle of the applications. This paper carries out a comprehensive review on the main aspects related to Li-ion batteries manufacturing, to support the readers in understanding the complexity of the subject and the main challenges and opportunities for the future developments of this technology. The paper discusses the expected future demand of batteries; the main aspects related to the supply chain, including existing assets, input materials and alternative technologies; the end-of-life of batteries; the environmental impacts; and the main geopolitical implications.


2021 ◽  
Vol 105 (1) ◽  
pp. 21-28
Author(s):  
Tomas Kazda ◽  
Veronika Gavalierova ◽  
Petr Dostal ◽  
Michal Šustr ◽  
Martin Mačák ◽  
...  

Lithium-ion batteries are the most used type of batteries for portable devices and electric vehicles. In applications as electric vehicles, they must serve for many years and it is necessary to diagnose their condition. This article is focused on verifying the possibility of detecting changes that occur in the battery during its cycling using a non-destructive method of acoustic emission.


Author(s):  
Peyman Taheri ◽  
Scott Hsieh ◽  
Majid Bahrami

Lithium-ion (Li-ion) batteries are favored in hybrid-electric vehicles and electric vehicles for their outstanding power characteristics. In this paper the energy loss due to electrical contact resistance (ECR) at the interface of electrodes and current-collector bars in Li-ion battery assemblies is investigated for the first time. ECR is a direct result of contact surface imperfections and acts as an ohmic resistance at the electrode-collector joints. ECR is measured at electrode connections of a sample Li-ion battery, and a straightforward analysis is presented to evaluate the relevant energy loss. Through the experiments, it is observed that ECR is an important issue in energy management of Li-ion batteries. Effects of surface imperfection, contact pressure, joint type, collector bar material, and interfacial materials on ECR are highlighted. The obtained data show that in the considered battery, the energy loss due to ECR can be as high as 20% of the total energy flow in and out of the battery under normal operating conditions. However, ECR loss can be reduced to 6% when proper joint pressure and/or surface treatment are used. A poor connection at the electrode-collector interface can lead to a significant battery energy loss as heat generated at the interface. At sever conditions, heat generation due to ECR might cause serious safety issues, thermal runaway, sparks, and even melting of the electrodes.


Author(s):  
Partha P Paul ◽  
Vivek Thampy ◽  
Chuntian Cao ◽  
Hans-Georg Steinrueck ◽  
Tanvir R Tanim ◽  
...  

Realization of extreme fast charging (XFC, ≤15 minutes) of lithium-ion batteries is imperative for the widespread adoption of electric vehicles. However, dramatic capacity fading is associated with XFC, limiting its...


Author(s):  
Young-Han Lee ◽  
Yoon Hwa ◽  
Cheol-Min Park

The development of high-capacity and high-power lithium-ion batteries (LIBs) is a key challenge to meet the increasing demand for advanced mobile electronics and electric vehicles. A novel high-capacity and high-power...


2001 ◽  
Vol 7 (S2) ◽  
pp. 518-519
Author(s):  
H. Gabrisch ◽  
R. Yazami ◽  
B. Fultz

Rechargeable Lithium ion batteries are widely used as portable power source in communication and computer technology, prospective uses include medical implantable devices and electric vehicles. The safety and cycle life of Li ion batteries is improved over that of batteries containing metallic lithium anodes because the insertion of Li between the crystal layers of both electrodes was proved to be safer than the electroplating of Li onto a metallic Lithium anode. in Li-ion batteries, the charge transport is governed by the oscillation of Li ions between anode and cathode. They are sometimes called “rocking-chair“ batteries. The most common materials for these batteries are lithiated carbons for anodes, and transition metal oxides (LixCoO2) as cathodes.LixCoO2 has an ordered rhombohedral Rm structure consisting of alternating layers of Co-O-Li-O-Co. The capacity and energy density of the batteries is limited by the amount of Li that can be stored in the anode and cathode materials.


Batteries ◽  
2018 ◽  
Vol 4 (3) ◽  
pp. 39 ◽  
Author(s):  
Alain Mauger ◽  
Christian Julien

Among the compounds of the olivine family, LiMPO4 with M = Fe, Mn, Ni, or Co, only LiFePO4 is currently used as the active element of positive electrodes in lithium-ion batteries. However, intensive research devoted to other elements of the family has recently been successful in significantly improving their electrochemical performance, so that some of them are now promising for application in the battery industry and outperform LiFePO4 in terms of energy density, a key parameter for use in electric vehicles in particular. The purpose of this review is to acknowledge the current state of the art and the progress that has been made recently on all the elements of the family and their solid solutions. We also discuss the results from the perspective of their potential application in the industry of Li-ion batteries.


Subject Batteries and energy storage. Significance With the rise of renewable energies and electric vehicles, a major transition is underway in global energy markets. The key to facilitating growth in both areas is the falling cost of lithium-ion (Li-ion) batteries. Cheaper batteries have helped to reduce the cost of electric vehicles and are making large-scale energy storage on the power grid -- which is a necessity if renewables are to continue growing -- a reality. Impacts Secure access to lithium, cobalt and other battery-related materials will be vital to economic development. Competition over resources to build batteries could see protests, skirmishing and illegal trade where the resources are. Companies face higher due diligence demands when sourcing battery-producing materials.


Sign in / Sign up

Export Citation Format

Share Document