scholarly journals Energy/Economic Analysis and Optimization of On-Grid Photovoltaic System Using CPSO Algorithm

2021 ◽  
Vol 13 (22) ◽  
pp. 12420
Author(s):  
Reza Alayi ◽  
Mahdi Mohkam ◽  
Seyed Reza Seyednouri ◽  
Mohammad Hossein Ahmadi ◽  
Mohsen Sharifpur

Today, the use of renewable energy is increasing day by day, and this development requires the optimization of these technologies in various dimensions. Solar systems have a higher acceptance due to their high availability and accessibility; the most common solar technology is photovoltaic cell. In this research, modeling was done to achieve the most economically optimal arrangement of photovoltaic panels, inverters, and module placement to generate more electrical energy by considering economic parameters, for which the CPSO algorithm was used. Four different combinations of module and inverter were studied in this research, among which the second combination, which included PV module type one and inverter type two, was the best case. One of the significant results of the present study is 191,430 kWh of electrical energy during the studied year by the solar cell connected to the grid, which requires $42,792,727 to produce.

Author(s):  
Apar Chitransh ◽  
◽  
Mr. Sachin Kumar ◽  

We know that sun is the only sources which is available free of cost in our environment for the PV module. when the sun strikes in to the PV cell it converts to the electrical energy. Now a days to fulfill the requirement of energy the solar energy plays a main role of that. But some time this solar energy is not sufficient to fulfill this requirement than some time we use the MPPT techniques which is increase the power generation and main advantage of this techniques is that this is work in any climate. The full form of MPPT is MAXIMUM POWER POINT TRACKER. It gets the maximum power from the available PV unit and it is not depending upon the any environmental conditions. In this paper we discuss in detail the several abilities that how they get the maximum power point and system convergence, efficiency and cost of implementation. In this paper we show that all type pf MPPT techniques.


2018 ◽  
Vol 70 ◽  
pp. 01014
Author(s):  
Dariusz Strąk ◽  
Kinga Strąk ◽  
Magdalena Piasecka

The main aim of this work is to propose a new system of a hybrid photovoltaic system working with batteries and supercapacitors and to analyze its efficiency. The preliminary results of the study on the operation of the system are discussed. The results obtained while testing the operation of a hybrid system and a PV system working separately with batteries and supercapacitors are compiled and compared. The tests covered the systems efficiency for the following electrical loads: heater warming up water in a tank, and lighting - a LED light. The work of batteries and supercapacitors during discharge has been analysed. The use of a hybrid system made it possible to increase energy storage efficiency and the system operation flexibility, compared to solar systems offered by the sector.


2021 ◽  
Vol 1 (2) ◽  
pp. 1-4
Author(s):  
Apar chitransh ◽  
Sachin Kumar

we know that sun is the only sources which is available free of cost in our environment for the PV module. when the sun strikes in to the PV cell it converts to the electrical energy. Now a days to fulfill the requirement of energy the solar energy plays a main role of that. But some time this solar energy is not sufficient to fulfill this requirement than some time we use the MPPT techniques which is increase the power generation and main advantage of this techniques is that this is work in any climate. The full form of MPPT is MAXIMUM POWER POINT TRACKER. It gets the maximum power from the available PV unit and it is not depending upon the any environmental conditions. In this paper we discuss in detail the several abilities that how they get the maximum power point and system convergence, efficiency and cost of implementation. In this paper we show that all type pf MPPT techniques.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2919
Author(s):  
Jin-Hee Kim ◽  
Ji-Suk Yu ◽  
Jun-Tae Kim

BIPV (Building Integrated Photovoltaic) system is a building envelope technology that generates energy by converting solar energy into electricity. However, after producing electrical energy, the remaining solar energy is transferred as heat, raising the temperature at the rear of the BIPV module, and reducing electrical efficiency. On the other hand, a PVT (Photovoltaic Thermal) collector is a device that generates electricity from a PV module and at the same time uses the heat transferred to the air layer inside the collector. In general, the performance of air-type PVT collectors is based on energy analysis using the first law of thermodynamics. Since this performance does not take into account the loss amount, it is not the actual amount of power generation and preheat of the collector that can be used. Therefore, an exergy analysis based on the second law of thermodynamics considering the amount of energy loss must be performed. In this paper, an air-type PVT collector to which perforated baffles were applied was tested through outdoor experiments based on ISO 9806 standard. The total energy (thermal and electrical characteristics) and exergy according to the flow rate (100, 150, and 200 m3/h), solar radiation, and rear temperature of the PV module of the air-type PVT collector were analyzed. As a result, the total exergy efficiency of the air-type PVT collector with perforated baffles was 24.8–30.5% when the total energy efficiency was 44.1–63.3%.


2020 ◽  
Vol 9 (11) ◽  
pp. e1029119637
Author(s):  
Filipe de Souza Lins ◽  
Vinicius A. da Silva ◽  
Irenilza de Alencar Nääs ◽  
Nilsa Duarte da Silva Lima ◽  
Mário César da Silva

The demand for energy and the pressure for reducing environmental impacts is increasing in developing countries, mainly in agricultural areas. The generation of electricity from photovoltaic panels can be economically and environmentally advantageous as a source of renewable energy and the ability to reach remote consumers. The present study aimed to evaluate the performance of a photovoltaic system equipped with a sun-tracking device, comparing to a fixed panel. The test compared two panels of a photovoltaic cell system, one used a rotation module in two-axis, and the other a fixed one (control), for capturing solar energy throughout the day in a tropical region of Brazil. Solar energy data were obtained in the two photovoltaic panels with data continuously recorded six months, with a weather characteristic of high cloudiness and rainfall indexes. The commissioning of the tested photovoltaic panels was done on bright days. Power results indicated that the two-axis tracker system was useful during the test, presenting an increase of 26% when compared to the fixed panel. It was found that when the cloudiness and the rain index are very high, the sun tracking system might not be as efficient as foreseen. Rainfall and cloudiness index are essential factors for determining the feasibility of using a tracker device in tropical regions.


2013 ◽  
Vol 4 (2) ◽  
Author(s):  
Stoyo Platikanov ◽  
Milko Yovchev

Photovoltaic power supply of street lighting has been developing rapidly in recent years. A stand-alone photovoltaic (PV) system supplying light-emitting diode (LED) outdoor luminaires has been constructed in the Technical University of Gabrovo. A PV-LED system consists of a PV module, a storage battery, a solar controller, a LED lamp and a system for remote visualization of operating modes. Working processes for optimization of the night operating mode of LED luminaire have been studied. Data on electrical energy stored by the battery and consumed for lighting have been presented.


2018 ◽  
Vol 12 (2) ◽  
pp. 98 ◽  
Author(s):  
Jalaluddin . ◽  
Baharuddin Mire

Actual performance of photovoltaic module with solar tracking is presented. Solar radiation can be converted into electrical energy using photovoltaic (PV) modules. Performance of polycristalline silicon PV modules with and without solar tracking are investigated experimentally. The PV module with dimension 698 x 518 x 25 mm has maximum power and voltage is 45 Watt and 18 Volt respectively. Based on the experiment data, it is concluded that the performance of PV module with solar tracking increases in the morning and afternoon compared with that of fixed PV module. It increases about 18 % in the morning from 10:00 to 12:00 and in the afternoon from 13:30 to 14:00 (local time). This study also shows the daily performance characteristic of the two PV modules. Using PV module with solar tracking provides a better performance than fixed PV module. 


Author(s):  
Yasuhiro Matsumoto ◽  
Marco A. Ramos ◽  
Jose A. Urbano ◽  
Miguel A. Luna ◽  
Nun Pitalua-Diaz ◽  
...  

2021 ◽  
Vol 13 (11) ◽  
pp. 6364
Author(s):  
June Raymond L. Mariano ◽  
Yun-Chuan Lin ◽  
Mingyu Liao ◽  
Herchang Ay

Photovoltaic (PV) systems directly convert solar energy into electricity and researchers are taking into consideration the design of photovoltaic cell interconnections to form a photovoltaic module that maximizes solar irradiance. The purpose of this study is to evaluate the cell spacing effect of light diffusion on output power. In this work, the light absorption of solar PV cells in a module with three different cell spacings was studied. An optical engineering software program was used to analyze the reflecting light on the backsheet of the solar PV module towards the solar cell with varied internal cell spacing of 2 mm, 5 mm, and 8 mm. Then, assessments were performed under standard test conditions to investigate the power output of the PV modules. The results of the study show that the module with an internal cell spacing of 8 mm generated more power than 5 mm and 2 mm. Conversely, internal cell spacing from 2 mm to 5 mm revealed a greater increase of power output on the solar PV module compared to 5 mm to 8 mm. Furthermore, based on the simulation and experiment, internal cell spacing variation showed that the power output of a solar PV module can increase its potential to produce more power from the diffuse reflectance of light.


Author(s):  
VS Chandrika ◽  
M Mohamed Thalib ◽  
Alagar Karthick ◽  
Ravishankar Sathyamurthy ◽  
A Muthu Manokar ◽  
...  

Photovoltaic (PV) system efficiency depends on the geographical location and the orientation of the building. Until installing the building structures, the integration of the PV module must be evaluated with ventilation and without ventilation effects. This work optimises the performance of the 250 kWp grid-connected photovoltaic (GPV) for community buildings in the southern part of India. This simulation is carried out to evaluate the system efficiency of the GPV system under various ventilation conditions, such as free-standing PV (FSPV), building integrated photovoltaic ventilated (BIPV_V) and Building Integrated Photovoltaic without ventilation (BIPV). The PVsyst simulation tool is used to simulate and optimise the performance of the system with FSPV, BIPV and BIPV_V for the region of Chennai (13.2789° N, 80.2623° E), Tamilnadu, India. An annual system energy production is 446 MWh, 409 MWh and 428 MWh of FSPV, BIPV and BIPV_V system respectively. while electrical efficiency for the FSPV, BIPV_V, BIPV system is 15.45%. 15.25% and 14.75% respectively. Practical application: Integrating the grid connected photovoltaic system on the building reduces the energy consumption in the building. The integration of the PV on the roof or semi integrated on the roof is need to be investigated before installing on the buildings. The need for installation of the BIPV with ventilation is explored. This study will assist architects and wider community to design buildings roofs with GPV system which are more aesthetic and account for noise protection and thermal insulation in the region of equatorial climate zones.


Sign in / Sign up

Export Citation Format

Share Document