scholarly journals Effects of Sludge Concentration and Disintegration/Solubilization Pretreatment Methods on Increasing Anaerobic Biodegradation Efficiency and Biogas Production

2021 ◽  
Vol 13 (22) ◽  
pp. 12887
Author(s):  
Jeong-Yoon Ahn ◽  
Soon-Woong Chang

It is urgent to determine suitable municipal sludge treatment solutions to simultaneously minimize the environmental negative impacts and achieve sustainable energy benefits. In this study, different sludge pretreatment techniques were applied and investigated to enhance the sludge solubility and, subsequently, facilitate the anaerobic biodegradation performance of the mixed sludge under different sludge concentrations and pretreatment techniques. The sludge characteristics before and after pretreatment and batch experiments of anaerobic digestion of sludge samples under different conditions were analyzed and discussed. The results showed that the mechanical pretreatment method, alone and in combination with low-temperature heat treatment, significantly improved the sludge solubility, with the highest solubility at 39.23%. The maximum biomethane yield achieved was 0.43 m3/kg after 10 d of anaerobic digestion of a 3% sludge sample subjected to mechanical and thermal pretreatment prior to anaerobic biodegradation. In comparison, it took more than 28 d to achieve the same biomethane production with the unpretreated sludge sample. Mechanical pretreatment and subsequent heat treatment showed a high ability to dissolve sludge and, subsequently, accelerate anaerobic digestion, thereby providing promising prospects for increasing the treatment capacity of existing and new sludge treatment plants.

1997 ◽  
Vol 36 (12) ◽  
pp. 111-116 ◽  
Author(s):  
Kyung-Yub Hwang ◽  
Eung-Bai Shin ◽  
Hong-Bok Choi

This study evaluated the effectiveness of sewage pretreatment as it affected the subsequent anaerobic digestion of waste activated sludge (WAS). The key to this sludge pretreatment process was that microorganism cells within WAS were ruptured by mechanical jet and smash under pressurized conditions, 5–50 bar pressure. Cell rupture was estimated by soluble protein concentration (SPC) because the cytoplasm of microorganisms is mainly composed of protein. The SPC in the WAS varied significantly before and after pretreatment. In particular, cell rupture increased from 6% to 43% with the increase of the pretreated pressure (5–30bar), volatile solids concentration and thickening time of WAS. In the WAS pretreatment with long-thickening time (12h < thickening time ≤ 48h), cell rupture was monitored 5–10 % higher than short-thickening time (Oh <thickening time ≤ 12h). Generally, it was observed that higher anaerobic digestion efficiencies of WAS could be obtained according to the increase of microorganism cell rupture through mechanical pretreatment of WAS.


2002 ◽  
Vol 46 (4-5) ◽  
pp. 447-453 ◽  
Author(s):  
J. Zábranská ◽  
M. Dohányos ◽  
P. Jeníček ◽  
P. Zaplatílková ◽  
J. Kutil

Thermophilic anaerobic digestion of sewage sludge has been successfully operated in full-scale tanks almost three years. The higher loading capacity and specific biogas production rate in comparison with mesophilic digestion was proved. Thermophilic anaerobic sludge is also more resistant against foaming problems. Biogas from thermophilic tanks contains less hydrogen sulphide and other malodorous substances. Pathogens removal rate is apparently more efficient in the thermophilic process.


1997 ◽  
Vol 35 (10) ◽  
pp. 207-211 ◽  
Author(s):  
H. B. Choi ◽  
K. Y. Hwang ◽  
E. B. Shin

This research investigates the effect of sludge pretreatment on the anaerobic digestion of waste-activated sludge (WAS). In the key of this sludge pretreatment process, bacteria in the WAS were ruptured by mechanical jet and smashed under pressurized conditions. The protein concentrations in the sludge varied significantly after pretreatment. Protein concentration increased according to jet times and pressure. In batch experiments, volatile solids (VS) removal efficiencies were 13∼50% when the WAS pretreated once under 30 bar was fed into an anaerobic digester with 2∼26 day retention time. In the same operating conditions, when intact WAS was fed into the digester, VS removal efficiencies were 2∼35%. Therefore, it is recognized that higher digestion efficiencies of the WAS were obtained through a mechanical pretreatment of sludge.


2020 ◽  
Vol 202 ◽  
pp. 08003
Author(s):  
Syafrudin ◽  
Winardi Dwi Nugraha ◽  
Soraya Annisa Putri ◽  
Hashfi Hawali Abdul Matin ◽  
Budiyono

Biogas technology is an alternative solution to the energy crisis issue in Indonesia. This study focuses on determining the optimum value of grind size variations in biogas production using the Liquid Anaerobic Digestion (L-AD) from rice husk waste. It is consists of the preparation stage, total solids calculation, the operation phase, and results analysis. The rice husk is collected from Rowosari village, and it has been pre-treated by 6% NaOH of chemical pre-treatment. The physical treatment uses numerous grind sizes, including un-grinded rice husk as control, and the 10 mesh, 18 mesh, 35 mesh, 60 mesh of rice husk as an observed variable. All variables are duplicate into 12 reactors, and the biogas production is observed by collecting gas volume in each reactor for 60 days. The calculated biogas is expressed by ml/grTS. The result shows that the grind size of 10 mesh, 18 mesh, 35 mesh, and 60 mesh rice husk produces a total biogas rate of 54.95, 44.86, 58.13, and 72.14 ml/grTS respectively. The rice husk control produces 9.67 ml/gr TS as the lowest rate of biogas production compared to the others, while the 60 mesh rice husk becomes the highest biogas production rate.


2013 ◽  
Vol 69 (4) ◽  
pp. 889-895 ◽  
Author(s):  
P. G. Kougias ◽  
K. Boe ◽  
S. O-Thong ◽  
L. A. Kristensen ◽  
I. Angelidaki

Anaerobic digestion foaming is a common operation problem in biogas plants with negative impacts on the biogas plants economy and environment. A survey of 16 Danish full-scale biogas plants on foaming problems revealed that most of them had experienced foaming in their processes up to three times per year. Foaming incidents often lasted from one day to three weeks, causing 20–50% biogas production loss. One foaming case at Lemvig biogas plant has been investigated and the results indicated that the combination of feedstock composition and mixing pattern of the reactor was the main cause of foaming in this case. Moreover, no difference in bacterial communities between the foaming and non-foaming reactors was observed, showing that filamentous bacteria were not the main reason for foaming in this case.


2004 ◽  
Vol 50 (9) ◽  
pp. 25-32 ◽  
Author(s):  
F. Hogan ◽  
S. Mormede ◽  
P. Clark ◽  
M. Crane

Ultrasound is the term used to describe sound energy at frequencies above 20 kHz. Highpowered ultrasound can be applied to a waste stream via purpose-designed tools in order to induce cavitation. This effect results in the rupture of cellular material and reduction of particle size in the waste stream, making the cells more amenable to downstream processing. sonixTM is a new technology utilising high-powered, concentrated ultrasound for conditioning sludges prior to further treatment. This paper presents recent results from a number of demonstration and full-scale plants treating thickened waste activated sludge (TWAS) prior to anaerobic digestion, therefore enhancing the process. The present studies have proved that the use of ultrasound to enhance anaerobic digestion can be achieved at full scale and effectively result in the TWAS (typically difficult to digest) behaving, after sonication, as if it were a “primary” sludge. The technology presents benefits in terms of increased biogas production, better solids reduction, improved dewatering characteristics of the digested sludge mixture and relatively short payback periods of two years or less subject to the site conditions and practices applicable at that time.


2020 ◽  
Vol 7 (4) ◽  
pp. 123 ◽  
Author(s):  
Ali Hosseini Taleghani ◽  
Teng-Teeh Lim ◽  
Chung-Ho Lin ◽  
Aaron C. Ericsson ◽  
Phuc H. Vo

Antibiotic-resistant microorganisms are drawing a lot of attention due to their severe and irreversible consequences on human health. The animal industry is considered responsible in part because of the enormous volume of antibiotics used annually. In the current research, veterinary antibiotic (VA) degradation, finding the threshold of removal and recognizing the joint effects of chlortetracycline (CTC) and Tylosin combination on the digestion process were studied. Laboratory scale anaerobic digesters were utilized to investigate potential mitigation of VA in swine manure. The digesters had a working volume of 1.38 L (in 1.89-L glass jar), with a hydraulic retention time (HRT) of 21 days and a loading rate of 1.0 g-VS L−1 d−1. Digesters were kept at 39 ± 2 °C in incubators and loaded every two days, produced biogas every 4 days and digester pH were measured weekly. The anaerobic digestion (AD) process was allowed 1.5 to 2 HRT to stabilize before adding the VAs. Tests were conducted to compare the effects of VAs onto manure nutrients, volatile solid removal, VA degradation, and biogas production. Concentrations of VA added to the manure samples were 263 to 298 mg/L of CTC, and 88 to 263 mg/L of Tylosin, respectively. Analysis of VA concentrations before and after the AD process was conducted to determine the VA degradation. Additional tests were also conducted to confirm the degradation of both VAs dissolved in water under room temperature and digester temperature. Some fluctuations of biogas production and operating variables were observed because of the VA addition. All CTC was found degraded even only after 6 days of storage in water solution; thus, there was no baseline to estimate the effects of AD. As for Tylosin, 100% degradation was observed due to the AD (removal was 100%, compared with 24–40% degradation observed in the 12-day water solution storage). Besides, complete Tylosin degradation was also observed in the digestate samples treated with a mixture of the two VAs. Lastly, amplicon sequencing was performed on each group by using the 50 most variable operational taxonomic units (OTUs)s and perfect discriminations were detected between groups. The effect of administration period and dosage of VAs on Phyla Firmicutes Proteobacteria, Synergistetes and Phylum Bacteroides was investigated. These biomarkers’ abundance can be employed to predict the sample’s treatment group.


2011 ◽  
Vol 3 (5) ◽  
pp. 123-126
Author(s):  
Svetlana Ofverstrom ◽  
Regimantas Dauknys ◽  
Ieva Sapkaitė

Iron salts are used at wastewater treatment plants (WWTPs) for several reasons: for removing chemical phosphorus, preventing from struvite formation and reducing the content of hydrogen sulfide (H2S) in biogas. Anaerobic digestion is a common scheme for sludge treatment due to producing biogas that could be used as biofuel. Laboratory analysis has been carried out using anaerobic digestion model W8 (Armfield Ltd, UK) to investigate any possible effect of adding FeCl3 on the anaerobic digestion of primary sludge (PS) and waste activated sludge (WAS) mixture as well as on releasing phosphates to digested sludge liquor. The obtained results showed that FeCl3 negatively impacted the anaerobic digestion process by reducing the volume of produced biogas. Fe-dosed sludge (max) produced 30% less biogas. Biogas production from un-dosed and Fe-dosed sludge (min) was similar to the average of 1.20 L/gVSfed. Biogas composition was not measured during the conducted experiments. Phosphorus content in sludge liquor increased at an average of 38% when digesting sludge without ferric chloride dosing. On the contrary, phosphate content in sludge liquor from digested Fe-dosed sludge decreased by approx. 80%. Santrauka Nuotekų valymo įrenginiuose geležies druskos naudojamos cheminiam fosforui šalinti, sieros vandeniliui biodujose mažinti ir struvito nuogulų formavimosi prevencijai. Tyrimai atlikti laboratorinėmis sąlygomis naudojant anaerobinio pūdymo modelį W8 (Armfield Ltd., Didžioji Britanija) ir pūdant pirminio perteklinio dumblo mišinį, į kurį buvo dedama geležies druskos, siekiant nustatyti geležies druskos naudojimo efektą anarobinio pūdymo procesui ir fosfatų išsiskyrimui į dumblo vandenį. Rezultatai parodė, kad pūdant dumblą be geležies druskos ir dedant geležies druskos minimalią dozę, susidarė vidutiniškai vienodi kiekiai biodujų (mL/gBSMtiekiam.), bet į pūdomą dumblą dedant maksimalią geležies dozę, biodujų išeiga vidutiniškai sumažėjo 30 %. Į pūdomą dumblą nededant geležies chlorido, fosfatų koncentracija dumblo vandenyje vidutiniškai padidėjo 38 %. Ir priešingai, geležies chlorido dozės fosfatų koncentraciją pūdyto dumblo vandenyje sumažino 80 %.


2014 ◽  
Vol 40 (2) ◽  
pp. 123-136 ◽  
Author(s):  
Jan Suschka ◽  
Klaudiusz Grübel

Abstract Primary or secondary sewage sludge in medium and large WWTP are most often processed by anaerobic digestion, as a method of conditioning, sludge quantity minimization and biogas production. With the aim to achieve the best results of sludge processing several modifications of technologies were suggested, investigated and introduced in the full technical scale. Various sludge pretreatment technologies before anaerobic treatment have been widely investigated and partially introduced. Obviously, there are always some limitations and some negative side effects. Selected aspects have been presented and discussed. The problem of nitrogen has been highlighted on the basis of the carried out investigations. The single and two step - mesophilic and thermophilic - anaerobic waste activated sludge digestion processes, preceded by preliminary hydrolysis were investigated. The aim of lab-scale experiments was pre-treatment of the sludge by means of low intensive alkaline and hydrodynamic disintegration. Depending on the pretreatment technologies and the digestion temperature large ammonia concentrations, up to 1800 mg NH4/dm3 have been measured. Return of the sludge liquor to the main sewage treatment line means additional nitrogen removal costs. Possible solutions are discussed.


2019 ◽  
Vol 116 ◽  
pp. 00095
Author(s):  
Katarzyna Umiejewska

Wastewater from breweries usually contains high levels of organic components, which are generally easily biodegradable. Ideally, the mainstream method of brewery wastewater treatment is based on biological transformation, which have been reported to be effective in efficiently reducing COD concentration. Anaerobic digestion technology plays an important role in the treatment of high strength wastewater [1]. The benefit of the process is biogas production and recovering the energy. The main goal of the paper is to present the results of a full-scale research performed in a brewery WWTP in 2016. Wastewater from brewery containing COD, a priority pollutant of organic components, is treated in IC reactor. The biogas produced during the anaerobic digestion is transformed into heat. Total COD and soluble COD were measured 5 days a week in wastewater before and after anaerobic reactor. In raw wastewater, average total COD was 5226 mg/L with the percentage share of soluble COD 89.4%. As a result of anaerobic treatment 83,7% reduction of total COD and 92.9% reduction of soluble COD were obtained. The average daily biogas production was 4089 m3/d.


Sign in / Sign up

Export Citation Format

Share Document