scholarly journals Diversity Variation of Silica-Scaled Chrysophytes Related to Differences in Physicochemical Variables in Estuaries of Rivers in an Arctic Watershed

2021 ◽  
Vol 13 (24) ◽  
pp. 13768
Author(s):  
Anna Bessudova ◽  
Viktor Gabyshev ◽  
Alena Firsova ◽  
Olga Gabysheva ◽  
Yurij Bukin ◽  
...  

The present study examined the taxonomic diversity of silica-scaled chrysophytes in the estuaries of the Arctic watershed of Yakutia in the context of global climate change, as these aquatic organisms are highly sensitive to environmental changes. Previously, 41 species of silica-scaled chrysophytes were recorded in the waters of Yakutia. In the present study, we supplemented this list with 55 species. We observed a high species richness (82 taxa) of silica-scaled chrysophytes in the study area. Of these, eight species were recorded in the waters of Russia for the first time. At present, the study area represents the northernmost habitat for most species observed during the study. The diversity of silica-scaled chrysophytes in Arctic rivers is comparable to or even greater than the diversity of chrysophycean flora at the middle latitudes. Most of these chrysophytes are represented by polyzonal and ubiquitous species. During 2008–2010, we noted increased relative numbers of boreal species in northern waters compared with data obtained during the previous 30 years. Overall, the species richness of silica-scaled chrysophytes in the studied rivers increased with increase in water transparency, temperature, and magnesium ion concentration, but decreased with increase in surfactant concentration. The origin of samples from a certain river; distance of the sampling site from the estuary; water temperature, transparency, and colour; and concentration of carbon dioxide, magnesium ions, total iron, surfactants, and oil products affect the species composition of silica-scaled chrysophytes in the study area. Our findings are fundamental to evaluate the current status of Arctic aquatic microflora and its further monitoring in the context of anthropogenic and climatic impacts.

Author(s):  
Malte Hahn ◽  
Hendrik Dankowski ◽  
Sören Ehlers ◽  
Sandro Erceg ◽  
Thomas Rung ◽  
...  

It is inevitable that commercial shipping and oil and gas resource exploitation activities in the Arctic will increase due to decreasing sea ice extent caused by global climate changes. Significantly more demanding and at the same time less well known environmental conditions create a need for reliable methods to assess icebreaking performance guaranteeing safe performance of the ships operating in this area subjected to various ice conditions. The classic approach of assessing ice-going performance, which combines class rules, experience and model tests, may not be applicable for the Arctic region in full. Furthermore, ship yards experience difficulties due to decreasing time frames and financial restrictions. Therefore this paper seeks to introduce a new development for a realistic and validated direct simulation approach for prediction of the hull load and icebreaking resistance that covers all aspects of the industrial design process and allows a more comprehensive analysis. The breaking model will provide a variable breaking pattern and is able to mimic the influence of the vessel speed and the environment on the ice loading and the predicted breaking length. In order to predict the extreme representative conditions to be simulated, a reverse extreme load prediction methodology is incorporated. An efficient, time dependent dynamic coupling between broken ice fragments, ice features, the 3D flow field and the ship’s hull provides resistance values for performance calculations. The computational model will be validated against full-scale data and class rules using deterministic and probabilistic measures. This simulation approach is developed within international research collaboration between Pella Sietas, Rolls Royce Marine, TUHH and NTNU. An overview of the project together with the current status of the ongoing work including first results is presented.


Author(s):  
Mauro Gobbi ◽  
Valeria Lencioni

Carabid beetles and chironomid midges are two dominant cold-adapted taxa, respectively on glacier forefiel terrains and in glacial-stream rivers. Although their sensitivity to high altitude climate warming is well known, no studies compare the species assemblages exhibited in glacial systems. Our study compares diversity and distributional patterns of carabids and chironomids in the foreland of the receding Amola glacier in central-eastern Italian Alps. Carabids were sampled by pitfall traps; chironomids by kick sampling in sites located at the same distance from the glacier as the terrestrial ones. The distance from the glacier front was considered as a proxy for time since deglaciation since these variables are positively correlated. We tested if the distance from the glacier front affects: i) the species richness; ii) taxonomic diversity; and iii) species turnover. Carabid species richness and taxonomic diversity increased positively from recently deglaciated sites (those c. 160 m from the glacier front) to sites deglaciated more than 160yrs ago (those located >1300 m from glacier front). Species distributions along the glacier foreland were characterized by mutually exclusive species. Conversely, no pattern in chironomid species richness and turnover was observed. Interestingly, taxonomic diversity increased significantly: closely related species were found near the glacier front, while the most taxonomically diverse species assemblages were found distant from the glacier front. Increasing glacial retreat differently affect epigeic and aquatic insect taxa: carabids respond faster to glacier retreat than do chironomids, at least in species richness and species turnover patterns.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jang-Mu Heo ◽  
Seong-Su Kim ◽  
Sung-Ho Kang ◽  
Eun Jin Yang ◽  
Ki-Tae Park ◽  
...  

AbstractThe western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2 day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2 day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
David Docquier ◽  
Torben Koenigk

AbstractArctic sea ice has been retreating at an accelerating pace over the past decades. Model projections show that the Arctic Ocean could be almost ice free in summer by the middle of this century. However, the uncertainties related to these projections are relatively large. Here we use 33 global climate models from the Coupled Model Intercomparison Project 6 (CMIP6) and select models that best capture the observed Arctic sea-ice area and volume and northward ocean heat transport to refine model projections of Arctic sea ice. This model selection leads to lower Arctic sea-ice area and volume relative to the multi-model mean without model selection and summer ice-free conditions could occur as early as around 2035. These results highlight a potential underestimation of future Arctic sea-ice loss when including all CMIP6 models.


AMBIO ◽  
2021 ◽  
Author(s):  
Henry P. Huntington ◽  
Andrey Zagorsky ◽  
Bjørn P. Kaltenborn ◽  
Hyoung Chul Shin ◽  
Jackie Dawson ◽  
...  

AbstractThe Arctic Ocean is undergoing rapid change: sea ice is being lost, waters are warming, coastlines are eroding, species are moving into new areas, and more. This paper explores the many ways that a changing Arctic Ocean affects societies in the Arctic and around the world. In the Arctic, Indigenous Peoples are again seeing their food security threatened and cultural continuity in danger of disruption. Resource development is increasing as is interest in tourism and possibilities for trans-Arctic maritime trade, creating new opportunities and also new stresses. Beyond the Arctic, changes in sea ice affect mid-latitude weather, and Arctic economic opportunities may re-shape commodities and transportation markets. Rising interest in the Arctic is also raising geopolitical tensions about the region. What happens next depends in large part on the choices made within and beyond the Arctic concerning global climate change and industrial policies and Arctic ecosystems and cultures.


Diversity ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 243
Author(s):  
Javier Alcocer ◽  
Luis A. Oseguera ◽  
Diana Ibarra-Morales ◽  
Elva Escobar ◽  
Lucero García-Cid

High-mountain lakes are among the most comparable ecosystems globally and recognized sentinels of global change. The present study pursued to identify how the benthic macroinvertebrates (BMI) communities of two tropical, high mountain lakes, El Sol and La Luna, Central Mexico, have been affected by global/regional environmental pressures. We compared the environmental characteristics and the BMI communities between 2000–2001 and 2017–2018. We identified three principal environmental changes (the air and water temperature increased, the lakes’ water level declined, and the pH augmented and became more variable), and four principal ecological changes in the BMI communities [a species richness reduction (7 to 4), a composition change, and a dominant species replacement all of them in Lake El Sol, a species richness increase (2 to 4) in Lake La Luna, and a drastic reduction in density (38% and 90%) and biomass (92%) in both lakes]. The air and water temperature increased 0.5 °C, and lakes water level declined 1.5 m, all suggesting an outcome of climate change. Contrarily to the expected acidification associated with acid precipitation, both lakes deacidified, and the annual pH fluctuation augmented. The causes of the deacidification and the deleterious impacts on the BMI communities remained to be identified.


2007 ◽  
Vol 13 ◽  
pp. 149-168 ◽  
Author(s):  
Erik J. Ekdahl

Average global temperatures are predicted to rise over the next century and changes in precipitation, humidity, and drought frequency will likely accompany this global warming. Understanding associated changes in continental precipitation and temperature patterns in response to global change is an important component of long-range environmental planning. For example, agricultural management plans that account for decreased precipitation over time will be less susceptible to the effects of drought through implementation of water conservation techniques.A detailed understanding of environmental response to past climate change is key to understanding environmental changes associated with global climate change. To this end, diatoms are sensitive to a variety of limnologic parameters, including nutrient concentration, light availability, and the ionic concentration and composition of the waters that they live in (e.g. salinity). Diatoms from numerous environments have been used to reconstruct paleosalinity levels, which in turn have been used as a proxy records for regional and local paleoprecipitation. Long-term records of salinity or paleoprecipitation are valuable in reconstructing Quaternary paleoclimate, and are important in terms of developing mitigation strategies for future global climate change. High-resolution paleoclimate records are also important in groundtruthing global climate simulations, especially in regions where the consequences of global warming may be severe.


2015 ◽  
Vol 28 (10) ◽  
pp. 4027-4033 ◽  
Author(s):  
Doo-Sun R. Park ◽  
Sukyoung Lee ◽  
Steven B. Feldstein

Abstract Wintertime Arctic sea ice extent has been declining since the late twentieth century, particularly over the Atlantic sector that encompasses the Barents–Kara Seas and Baffin Bay. This sea ice decline is attributable to various Arctic environmental changes, such as enhanced downward infrared (IR) radiation, preseason sea ice reduction, enhanced inflow of warm Atlantic water into the Arctic Ocean, and sea ice export. However, their relative contributions are uncertain. Utilizing ERA-Interim and satellite-based data, it is shown here that a positive trend of downward IR radiation accounts for nearly half of the sea ice concentration (SIC) decline during the 1979–2011 winter over the Atlantic sector. Furthermore, the study shows that the Arctic downward IR radiation increase is driven by horizontal atmospheric water flux and warm air advection into the Arctic, not by evaporation from the Arctic Ocean. These findings suggest that most of the winter SIC trends can be attributed to changes in the large-scale atmospheric circulations.


2021 ◽  
Author(s):  
Elisie Kåresdotter ◽  
Zahra Kalantari

<p>Wetlands as large-scale nature-based solutions (NBS) provide multiple ecosystem services of local, regional, and global importance. Knowledge concerning location and vulnerability of wetlands, specifically in the Arctic, is vital to understand and assess the current status and future potential changes in the Arctic. Using available high-resolution wetland databases together with datasets on soil wetness and soil types, we created the first high-resolution map with full coverage of Arctic wetlands. Arctic wetlands' vulnerability is assessed for the years 2050, 2075, and 2100 by utilizing datasets of permafrost extent and projected mean annual average temperature from HadGEM2-ES climate model outputs for three change scenarios (RCP2.6, 4.5, and 8.5). With approximately 25% of Arctic landmass covered with wetlands and 99% being in permafrost areas, Arctic wetlands are highly vulnerable to changes in all scenarios, apart from RCP2.6 where wetlands remain largely stable. Climate change threatens Arctic wetlands and can impact wetland functions and services. These changes can adversely affect the multiple services this sort of NBS can provide in terms of great social, economic, and environmental benefits to human beings. Consequently, negative changes in Arctic wetland ecosystems can escalate land-use conflicts resulting from natural capital exploitation when new areas become more accessible for use. Limiting changes to Arctic wetlands can help maintain their ecosystem services and limit societal challenges arising from thawing permafrost wetlands, especially for indigenous populations dependent on their ecosystem services. This study highlights areas subject to changes and provides useful information to better plan for a sustainable and social-ecological resilient Arctic.</p><p>Keywords: Arctic wetlands, permafrost thaw, regime shift vulnerability, climate projection</p>


Sign in / Sign up

Export Citation Format

Share Document