scholarly journals Climate Data to Predict Geometry of Cracks in Expansive Soils in a Tropical Semiarid Region

2022 ◽  
Vol 14 (2) ◽  
pp. 675
Author(s):  
Jacques Carvalho Ribeiro Filho ◽  
Eunice Maia de Andrade ◽  
Maria Simas Guerreiro ◽  
Helba Araujo de Queiroz Palácio ◽  
José Bandeira Brasil

The nonlinear dynamics of the determining factors of the morphometric characteristics of cracks in expansive soils make their typification a challenge, especially under field conditions. To overcome this difficulty, we used artificial neural networks to estimate crack characteristics in a Vertisol under field conditions. From July 2019 to June 2020, the morphometric characteristics of soil cracks (area, depth and volume), and environmental factors (soil moisture, rainfall, potential evapotranspiration and water balance) were monitored and evaluated in six experimental plots in a tropical semiarid region. Sixty-six events were measured in each plot to calibrate and validate two sets of inputs in the multilayer neural network model. One set was comprised of environmental factors with significant correlations with the morphometric characteristics of cracks in the soil. The other included only those with a significant high and very high correlation, reducing the number of variables by 35%. The set with the significant high and very high correlations showed greater accuracy in predicting crack characteristics, implying that it is preferable to have fewer variables with a higher correlation than to have more variables of lower correlation in the model. Both sets of data showed a good performance in predicting area and depth of cracks in the soils with a clay content above 30%. The highest dispersion of modeled over predicted values for all morphometric characteristics was in soils with a sand content above 40%. The model was successful in evaluating crack characteristics from environmental factors within its limitations and may support decisions on watershed management in view of climate-change scenarios.

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Huiping Huang ◽  
Yuping Han ◽  
Mingming Cao ◽  
Jinxi Song ◽  
Heng Xiao

Aridity index, as the ration of potential evapotranspiration and precipitation, is an important indicator of regional climate. GIS technology, Morlet wavelet, Mann-Kendall test, and principal component analysis are utilized to investigate the spatial-temporal variation of aridity index and its impacting factors in China on basis of climate data from 599 stations during 1960–2013. Results show the following. (1) Boundaries between humid and semihumid region, and semihumid and semiarid region coincide with 400 mm and 800 mm precipitation contour lines. (2) Average annual aridity index is between 3.4 and 7.5 and shows decrease trend with a tendency of –0.236 per decade at 99% confidence level. (3) The driest and wettest month appear in December and July, respectively, in one year. (4) Periods of longitudinal and latitudinal shift of aridity index 1, 1.5, and 4 contours coordinate are 10 and 25 years, 6 and 26 years, and 5 and 25 years, respectively. (5) Four principal components which affect aridity index are thermodynamic factors, water and radiation factors, geographical and air dynamic factors, and evaluation factor, respectively.


Atmosphere ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1206
Author(s):  
Hui Ping Tsai ◽  
Wei-Ying Wong

The study uses 30 years of the third generation of Advanced Very-High-Resolution Radiometer (AVHRR) NDVI3g monthly data from 1982 to 2012 to identify the natural clusters and important driving factors of the upstream watersheds in Taiwan through hierarchical cluster analysis (HCA) and redundancy analysis (RDA), respectively. Subsequently, as a result of HCA, six clusters were identified based on the 30 years of monthly NDVI data, delineating unique NDVI characteristics of the upstream watersheds. Additionally, based on the RDA results, environmental factors, including precipitation, temperature, slope, and aspect, can explain approximately 52% of the NDVI variance over the entire time series. Among environmental factors, nine factors were identified significantly through RDA analysis for explaining NDVI variance: average slope, temperature, flat slope, northeast-facing slope, rainfall, east-facing slope, southeast-facing slope, west-facing slope, and northwest-facing slope, which reflect an intimate connection between climatic and orthographic factors with vegetation. Furthermore, the rainfall and temperature represent different variations in all scenarios and seasons. With consideration of the characteristics of the clusters and significant environmental factors, corresponding climate change adaptation strategies are proposed for each cluster under climate change scenarios. Thus, the results provide insight to assess the natural clustering of the upstream watersheds in Taiwan, benefitting future sustainable watershed management.


Climate ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 20
Author(s):  
Kleoniki Demertzi ◽  
Vassilios Pisinaras ◽  
Emanuel Lekakis ◽  
Evangelos Tziritis ◽  
Konstantinos Babakos ◽  
...  

Simple formulas for estimating annual actual evapotranspiration (AET) based on annual climate data are widely used in large scale applications. Such formulas do not have distinct compartments related to topography, soil and irrigation, and for this reason may be limited in basins with high slopes, where runoff is the dominant water balance component, and in basins where irrigated agriculture is dominant. Thus, a simplistic method for assessing AET in both natural ecosystems and agricultural systems considering the aforementioned elements is proposed in this study. The method solves AET through water balance based on a set of formulas that estimate runoff and percolation. These formulas are calibrated by the results of the deterministic hydrological model GLEAMS (Groundwater Loading Effects of Agricultural Management Systems) for a reference surface. The proposed methodology is applied to the country of Greece and compared with the widely used climate-based methods of Oldekop, Coutagne and Turk. The results show that the proposed methodology agrees very well with the method of Turk for the lowland regions but presents significant differences in places where runoff is expected to be very high (sloppy areas and areas of high rainfall, especially during December–February), suggesting that the proposed method performs better due to its runoff compartment. The method can also be applied in a single application considering irrigation only for the irrigated lands to more accurately estimate AET in basins with a high percentage of irrigated agriculture.


2018 ◽  
Author(s):  
Benjamin R. Loveday ◽  
Timothy Smyth

Abstract. A consistently calibrated 40-year length dataset of visible channel remote sensing reflectance has been derived from the Advanced Very High Resolution Radiometer (AVHRR) sensor global time-series. The dataset uses as its source the Pathfinder Atmospheres – Extended (PATMOS-x) v5.3 Climate Data Record (CDR) for top-of-atmosphere (TOA) visible channel reflectances. This paper describes the theoretical basis for the atmospheric correction procedure and its subsequent implementation, including the necessary ancillary data files used and quality flags applied, in order to determine remote sensing reflectance. The resulting dataset is produced at daily, and archived at monthly, resolution, on a 0.1° × 0.1° grid at https://doi.pangaea.de/10.1594/PANGAEA.892175. The primary aim of deriving this dataset is to highlight regions of the global ocean affected by highly reflective blooms of the coccolithophorid Emiliania Huxleyi over the past 40 years.


2021 ◽  
Vol 7 (11) ◽  
pp. 912
Author(s):  
Rodolfo Bizarria ◽  
Pepijn W. Kooij ◽  
Andre Rodrigues

Maintaining symbiosis homeostasis is essential for mutualistic partners. Leaf-cutting ants evolved a long-term symbiotic mutualism with fungal cultivars for nourishment while using vertical asexual transmission across generations. Despite the ants’ efforts to suppress fungal sexual reproduction, scattered occurrences of cultivar basidiomes have been reported. Here, we review the literature for basidiome occurrences and associated climate data. We hypothesized that more basidiome events could be expected in scenarios with an increase in temperature and precipitation. Our field observations and climate data analyses indeed suggest that Acromyrmex coronatus colonies are prone to basidiome occurrences in warmer and wetter seasons. Even though our study partly depended on historical records, occurrences have increased, correlating with climate change. A nest architecture with low (or even the lack of) insulation might be the cause of this phenomenon. The nature of basidiome occurrences in the A. coronatus–fungus mutualism can be useful to elucidate how resilient mutualistic symbioses are in light of climate change scenarios.


Author(s):  
S. Rani ◽  
S. Sreekesh ◽  
P. Krishnan

<p><strong>Abstract.</strong> Appraisal of potential evapotranspiration (PET) is needed for estimating the agricultural water requirement and understanding hydrological processes in an arena. Therefore, aim of the paper was to estimate the PET in the upper Beas basin, situated in the Western Indian Himalaya, under future climate change scenarios (by mid-21st century). Climate data (1969&amp;ndash;2010) of Manali, Bhuntar and Katrain were obtained from India Meteorological Department (IMD) and the Indian Agricultural Research Institute (IARI). Landsat data were used for mapping land use/land cover (LULC) conditions of the basin through decision tree technique. Elevation detail of the catchment area is derived from the Cartosat-1 digital elevation model (DEM). Simulations of PET were done by the Soil and Water Assessment Tool (SWAT) model. The model was calibrated using the average monthly discharge data from Thalout station. The study found fluctuations in PET under different climate change scenarios. It is likely to increase in near future owing to the rise in temperature. The higher water demand can be met from the excess snowmelt water reaching the lower basin area during the cropping seasons. This study will be helpful to understand water availability conditions in the upper Beas basin in the near future.</p>


2021 ◽  
Vol 337 ◽  
pp. 01003
Author(s):  
Valteson da Silva Santos ◽  
Allan B.Silva de Medeiros ◽  
Romário S.Amaro da Silva ◽  
Olava F. Santos ◽  
Osvaldo de Freitas Neto ◽  
...  

In the last decades, several engineering works have been developed in the Northeast of Brazil, a region marked by the occurrence of collapsible and expansive soils. This work aimed to characterize and study the behavior of two samples of residual soils collected in the municipality of Salgueiro-PE regarding their collapse potentials and shear strength parameters, in natural and disturbed conditions, evaluating the influence of the applied vertical stresses and the structural arrangement in these properties. The results obtained showed that the two samples analyzed show collapsible behavior, however, the observed potential for collapse was lower after the original structure arrangement was undone. From the direct shear strength tests, the strength parameters of the two soils were obtained, which pointed effective friction angle close to 30° and cohesive intercept close to 0 kPa. The destructuring of the samples did not cause a considerable variation in these parameters. Thus, it was possible to conclude that for these samples the microstructure has a predominant influence on the occurrence of collapsibility, but does not have the same relevance on the shear strength, such that the material’s destructuring can be considered as an effective measure to reduce the potential collapse.


2015 ◽  
Vol 44 (6) ◽  
pp. 605-610 ◽  
Author(s):  
S. J. Martins ◽  
A. C. Soares ◽  
F. H. V. Medeiros ◽  
D. B. C. Santos ◽  
E. A. Pozza

1972 ◽  
Vol 23 (4) ◽  
pp. 541 ◽  
Author(s):  
HM Rawson ◽  
KN Ruwali

Differentiation of the branched ear of a semidwarf mutant wheat is described for plants grown under irrigated field conditions, and compared with cultivars bearing simple ears. With a very high spikelet number per ear (more than SO), and few grains per spikelet (a maximum of three), the branched ear offers a radically different concept for yield production. Yields per unit area of the current branched material were not as high as for Kalyan Sona, India's premier variety, but did exceed those for Late Mexico 120. Better yields could be expected if the random sterility of spikelets within the branched ear, first apparent early in spikelet differentiation, were reduced. However, individual fertile ears filled up to 128 grains weighing 4.8 g in the better plants.


Sign in / Sign up

Export Citation Format

Share Document