scholarly journals Research on the Gradual Process of the Metallization Structures and Mechanical Properties of Wood Veneer

Symmetry ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 550 ◽  
Author(s):  
Jingkui Li ◽  
Ruoying Wang ◽  
He Tian ◽  
Yanan Wang ◽  
Dawei Qi

In order to improve the mechanical properties of the wood surface and explore the mechanical effect of wood veneer surface metallization, the 31-year-old Pinus sylvestris is taken as the research object and Cu is deposited on the wood surface by magnetron sputtering to achieve wood veneer metallization. Based on X-ray diffraction (XRD) and nanoindentation, a research on the gradual process of the structures and mechanical properties of wood veneer metallization was carried out. The results indicate that wood veneer metallization does not affect the crystallization zone of wood, there are still wood cellulose characteristic peaks and the crystalline structure of the wood cellulose is not damaged; the thickness of the copper thin film increases with the increase of the deposition time, the cellulose characteristic peak strength gradually decrease, and the relative crystallinity also decreases; the characteristic diffraction peaks of Cu (111), Cu (200), and Cu (220) appear near the diffraction angle 2θ which is equal to 43.3°, 50.4°, and 74.1°, and the diffraction peak intensity increases with increase of deposition time, the copper film of the metal wood veneer crystallizes well; the load–displacement of wood veneer decreases significantly with the increase of deposition time, while the moduli of elasticity and hardness increase rapidly. The load–displacement of the samples which were coated for 15 min decreased by 80%, while the moduli of elasticity and hardness of these samples increased by 24.1 times and 17.3 times, respectively. From the results of Scanning Electron Microscope (SEM) measurement of the metallization of wood veneer, it can be seen that the uniform and continuous copper film can be formed on the wood veneer surface by using the magnetron sputtering method. This paper provides a basis for wood veneer surface metallization, which is of great significance for the functional improvement of wood, the expansion of wood application fields, and the enhancement of added value.

2020 ◽  
Vol 70 (3) ◽  
pp. 340-349
Author(s):  
Jingkui Li ◽  
Yanan Wang ◽  
He Tian ◽  
Dawei Qi ◽  
Ruoying Wang

Abstract It can be helpful for selected applications to improve the functionality of wood by compounding nano-metal materials with wood, endowing the wood surface with certain physical properties, for example, metallicity, electrical conductivity, and hydrophobicity. Therefore, in this study, a thin copper film was deposited on the surface of Pinus sylvestris L. var. mongholica Litv. veneer by magnetron sputtering. The film was applied at both room temperature and 200°C to obtain nano-copper–wood composites. The physical properties of wood-based nano-metal composites were characterized. The results indicated that the wood veneer metallization had no effect on the crystallization zone of wood; there were still wood cellulose characteristic peaks, but the intensity of the diffraction peak decreased. At the same time, there were characteristic diffraction peaks of copper. The mechanical properties of the wood veneer surface changed greatly; the surface of copper-plated wood veneer had good electrical conductivity and the wettability of the wood surface transformed from hydrophilic to hydrophobic. When the base temperature was 200°C, not only was the sheet resistance of the sample with coating time of 15 minutes about 4.6 times that of the sheet resistance of the sample at room temperature, but also the quality of the copper film on the wood surface was better than that at room temperature. The copper film was mainly composed of small particles with a compact arrangement.


Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1564
Author(s):  
Yanan Wang ◽  
Chengzhu Jin ◽  
Xinyi Wang ◽  
Qiushuang Li ◽  
Wenxuan Li ◽  
...  

The magnetron sputtering method was used to deposit nano-Al film on the wood surface of Pinus sylvestris L. var. mongholica Litv., and the material structure, electrical conductivity, mechanical properties and wetting properties were tested and characterized. When the sputtering time was 60 min, the average cross-grain sheet resistance of metallized wood was 695.9 mΩ, and the average along-grain sheet resistance was 227.2 mΩ. Load displacement decreased by more than 88%,elastic modulus increased by 49.2 times, hardness increased by 46 times andsurface hydrophobic angle was close to 130°. The grain size of the Al film on the wood surface was presented as nanoparticles, and the arrangement was uniform and dense. The results indicate that without any burden on the environment, the use of magnetron sputtering can quickly and efficiently achieve Al metallization on wood surfaces, so that the wood surface can obtain conductivity and hydrophobic properties. The elastic modulus and hardness of the wood surface were improved, the mechanical properties of the wood were effectively improved and the functional improvement of the wood was realized. This study provides a feasible method and basis for the study of the simple, efficient and pollution-free modification of wood.


2014 ◽  
Vol 989-994 ◽  
pp. 45-48
Author(s):  
Qing Xue ◽  
Yin Qun Hua ◽  
Yu Chuan Bai ◽  
Rui Fang Chen ◽  
Hai Xia Liu

The aim of this research is to improve the electrical performance of the nanometer copper film by laser micro shock processing. The nanometer copper film was prepared by the magnetron sputtering. The mechanism of laser micro shock processing effect on electrical resistivity, hardness and elastic modulus was investigated. The results show that the electrical resistivity of copper film after laser micro shock reduced by 22.5 % on average. And, the hardness and the elastic modulus increased by 38.5 % and 45.2 % on average, respectively. According to our research, we conclude that, the existence of a large number of twin, twin boundary, fault and the grow up grain are the main factor of the improvement of the electrical performance; and the existence of twin, stress concentration holes and fault are the key to improve its mechanical properties.


2020 ◽  
Vol 10 (16) ◽  
pp. 5448
Author(s):  
Hongbo Mu ◽  
Yanan Wang ◽  
Yongqi Tian ◽  
Xiaoming Duan ◽  
Jingkui Li ◽  
...  

The combination of nano-metal and wood to prepare copper-coated wood-based composite materials has important research value and practical significance for improving the function of wood, expanding the application field of wood, and adding added value. In this paper, 31-year-old wood (Pinus sylvestris L. var. mongholica Litv) veneer was taken as the research object. The wood veneer was pretreated by ultrasonic wave, and copper film was deposited on the surface of the wood veneer by magnetron sputtering to prepare “environmentally friendly” copper-plated wood-based composite materials. The microstructure and hydrophobic properties of Cu-coated wood-based composites were characterized and studied. With the increase in coating time, the diffraction peak intensity of wood cellulose gradually decreased, and the diffraction peaks of Cu (111), Cu (200), and Cu (220) of metallic copper appeared. Under the sputtering condition of a substrate temperature of 200 °C, the copper film deposit on the surface of the wood was uniform and densely arranged. The surface water contact angle reached 149.9°. Ultrasonic treatment increases the porous structure of wood, and the rough metal copper film interface was constructed on the surface of wood by magnetron sputtering to transform the surface wettability of the wood from hydrophilic to super-hydrophobic. The lotus leaf effect was realized on the wood surface.


2021 ◽  
Vol 11 (14) ◽  
pp. 6425
Author(s):  
Hidenori Takahashi ◽  
Shinya Omori ◽  
Hideyuki Asada ◽  
Hirofumi Fukawa ◽  
Yusuke Gotoh ◽  
...  

Cellulose nanofibre (CNF), a material composed of ultrafine fibres of wood cellulose fibrillated to nano-order level, is expected to be widely used because of its excellent properties. However, in the field of geotechnical engineering, almost no progress has been made in the development of techniques for using CNFs. The authors have focused on the use of CNF as an additive in cement treatment for soft ground, where cement is added to solidify the ground, because CNF can reduce the problems associated with cement-treated soil. This paper presents the results of a study on the method of mixing CNF, the strength and its variation obtained by adding CNF, and the change in permeability. CNF had the effect of mixing the cement evenly and reducing the variation in the strength of the treated soil. The CNF mixture increased the strength at the initial age but reduced the strength development in the long term. The addition of CNF also increased the flexural strength, although it hardly changed the permeability.


2021 ◽  
pp. 138723
Author(s):  
A.A. Onoprienko ◽  
V.I. Ivashchenko ◽  
P.L. Scrynskyy ◽  
A.M. Kovalchenko ◽  
A.O. Kozak ◽  
...  

2020 ◽  
Vol 403 ◽  
pp. 126373 ◽  
Author(s):  
Ph.V. Kiryukhantsev-Korneev ◽  
A.D. Sytchenko ◽  
A.Yu. Potanin ◽  
S.A. Vorotilo ◽  
E.A. Levashov

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Jinlong Jiang ◽  
Qiong Wang ◽  
Yubao Wang ◽  
Zhang Xia ◽  
Hua Yang ◽  
...  

The titanium- and silicon-codoped a-C:H films were prepared at different applied bias voltage by magnetron sputtering TiSi target in argon and methane mixture atmosphere. The influence of the applied bias voltage on the composition, surface morphology, structure, and mechanical properties of the films was investigated by XPS, AFM, Raman, FTIR spectroscopy, and nanoindenter. The tribological properties of the films were characterized on an UMT-2MT tribometer. The results demonstrated that the film became smoother and denser with increasing the applied bias voltage up to −200 V, whereas surface roughness increased due to the enhancement of ion bombardment as the applied bias voltage further increased. The sp3carbon fraction in the films monotonously decreased with increasing the applied bias voltage. The film exhibited moderate hardness and the superior tribological properties at the applied bias voltage of −100 V. The tribological behaviors are correlated to the H/E or H3/E2ratio of the films.


2019 ◽  
Vol 20 (7) ◽  
pp. 1486-1494
Author(s):  
Haiying Zhou ◽  
Xin Wei ◽  
Fuming Chen ◽  
Ge Wang ◽  
Lee M. Smith

Sign in / Sign up

Export Citation Format

Share Document