scholarly journals Mental Rotation Ability: Right or Left Hemisphere Competence? What We Can Learn from Callosotomized and Psychotic Patients

Symmetry ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1137
Author(s):  
Chiara Pierpaoli ◽  
Luigi Ferrante ◽  
Nicoletta Foschi ◽  
Simona Lattanzi ◽  
Riccardo Sansonetti ◽  
...  

Mental rotation is an abstract operation whereby a person imagines rotating an object or a body part to place it in a different position. The ability to perform mental rotation was attributed to right hemisphere for objects, to the left for one’s own body images. Mental rotation seems to be basic for imitation in anatomical mode. Previous studies showed that control subjects, callosotomized and psychotic patients chose the mirror-mode when imitating without instructions; when asked to use the same or opposite limb as the model, controls chose the anatomical mode, callosotomized patients mainly used mirror mode, psychotic patients were in between. The preference of callosotomized subjects is likely due to defective mental rotation, because of the lack of the corpus callosum (CC), thus suggesting an asymmetry in the hemispheric competence for mental rotation. Present research investigated the mental rotation ability in control subjects, callosotomized and psychotic patients. All subjects were shown pictures of a model, in first or third person perspective, with a cup in her right or left hand. They had to indicate which model’s hand held the cup, by answering with a verbal or motor modality in separate experimental sessions. In both sessions, control subjects produced 99% of correct responses, callosotomy patients 62%, and psychotic patients 91%. The difference was statistically significant, suggesting a role of the CC in the integration of the two hemispheres’ asymmetric functions in mental rotation.

Symmetry ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1953
Author(s):  
Chiara Pierpaoli ◽  
Mojgan Ghoushi ◽  
Nicoletta Foschi ◽  
Simona Lattanzi ◽  
Mara Fabri ◽  
...  

The mental rotation (MR) is an abstract mental operation thanks to which a person imagines rotating an object or a body part to place it in an other position. The ability to perform MR was belived to belong to the right hemisphere for objects, and to the left for one’s ownbody images. Mental rotation is considered to be basic for imitation with the anatomical perspective, which in turn is needed for social interactions and learning. Altered imitative performances have been reported in patients with resections or microstructure alterations of the corpus callosum (CC). These patients also display a reduced MR ability compared to control subjects, as shown in a recent behavioral study. The difference was statistically significant, leading us to hypothesize a role of the CC to integrate the two hemispheres’ asymmetric functions. The present study was designed to detect, by means of a functional MRI, the cortical activation evoked during an MR task in healthy control subjects and callosotomized patients. The results suggest that performing MR requires activation of opercular cortex and inferior parietal lobule in either hemispheres, and likely the integrity of the CC, thus confirming that the main brain commissure is involved in cognitive functions.


1980 ◽  
Vol 50 (2) ◽  
pp. 467-471
Author(s):  
Mayumi Yamamoto ◽  
Takeshi Hatta

14 normal subjects were given two tactile-recognition tasks. Subjects were asked to match the factually presented nonsense figures to the visual-recognition display on a Non-rotation task. On the Mental-rotation task subjects matched the tactile figures which were presented in various directions by means of mental rotation to the visual display. A greater superiority of the left hand on the Mental-rotation task was noted while on the Non-rotation task no differences between hands were shown. The right hemisphere may contribute more strongly to higher thought processes especially those which do not need verbal mediation.


1980 ◽  
Vol 1 (3) ◽  
pp. 279-294 ◽  
Author(s):  
Daniel B. Hier ◽  
Joni Kaplan

ABSTRACTWe have compared the verbal comprehension abilities of 34 right hemisphere damaged patients to 16 hospitalized control subjects of comparable age and educational attainment. The right hemisphere damaged patients performed as well as the control subjects on a vocabulary test, but were impaired in their ability to interpret proverbs and comprehend logico-grammatical sentences. Impairment on the proverbs test was the result of a decrease in the number of abstract interpretations, whereas impairment on the logico-grammatical sentence comprehension test was related to difficultes in grasping spatial and passive relationships. These comprehension impairments tended to correlate with visuospatial deficits and hemianopia, but not with the degree of hemiparesis or the presence of sensory extinction. Patients with anterior right hemisphere damage performed better on the logico-grammatical sentence conprehension test than patients with posterior damage. A variety of factors probably contribute to these verbal deficits including impaired intellect, inattention, an inability to grasp spatial relationships, and difficulties in manipulating the inner schemata of language.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Caleb Liang ◽  
Wen-Hsiang Lin ◽  
Tai-Yuan Chang ◽  
Chi-Hong Chen ◽  
Chen-Wei Wu ◽  
...  

AbstractBody ownership concerns what it is like to feel a body part or a full body as mine, and has become a prominent area of study. We propose that there is a closely related type of bodily self-consciousness largely neglected by researchers—experiential ownership. It refers to the sense that I am the one who is having a conscious experience. Are body ownership and experiential ownership actually the same phenomenon or are they genuinely different? In our experiments, the participant watched a rubber hand or someone else’s body from the first-person perspective and was touched either synchronously or asynchronously. The main findings: (1) The sense of body ownership was hindered in the asynchronous conditions of both the body-part and the full-body experiments. However, a strong sense of experiential ownership was observed in those conditions. (2) We found the opposite when the participants’ responses were measured after tactile stimulations had ceased for 5 s. In the synchronous conditions of another set of body-part and full-body experiments, only experiential ownership was blocked but not body ownership. These results demonstrate for the first time the double dissociation between body ownership and experiential ownership. Experiential ownership is indeed a distinct type of bodily self-consciousness.


2021 ◽  
Author(s):  
Sahba Besharati ◽  
Paul Jenkinson ◽  
Michael Kopelman ◽  
Mark Solms ◽  
Valentina Moro ◽  
...  

In recent decades, the research traditions of (first-person) embodied cognition and of (third-person) social cognition have approached the study of self-awareness with relative independence. However, neurological disorders of self-awareness offer a unifying perspective to empirically investigate the contribution of embodiment and social cognition to self-awareness. This study focused on a neuropsychological disorder of bodily self-awareness following right-hemisphere damage, namely anosognosia for hemiplegia (AHP). A previous neuropsychological study has shown AHP patients, relative to neurological controls, to have a specific deficit in third-person, allocentric inferences in a story-based, mentalisation task. However, no study has tested directly whether verbal awareness of motor deficits is influenced by either perspective-taking or centrism, and if these deficits in social cognition are correlated with damage to anatomical areas previously linked to mentalising, including the supramarginal and superior temporal gyri and related limbic white matter connections. Accordingly, two novel experiments were conducted with right-hemisphere stroke patients with (n = 17) and without AHP (n = 17) that targeted either their own (egocentric, experiment 1) or another stooge patient’s (experiment 2) motor abilities from a first-or-third person (allocentric in Experiment 2) perspective. In both experiments, neurological controls showed no significant difference between perspectives, suggesting that perspective-taking deficits are not a general consequence of right-hemisphere damage. More specifically, experiment 1 found AHP patients were more aware of their own motor paralysis when asked from a third compared to a first-person perspective, using both group level and individual level analysis. In experiment 2, AHP patients were less accurate than controls in making allocentric, third-person perspective judgements about the stooge patient, but with only a trend towards significance and with no within-group, difference between perspectives. Deficits in egocentric and allocentric third-person perspective taking were associated with lesions in the middle frontal gyrus, superior temporal and supramarginal gyri, with white matter disconnections more predominate in deficits in allocentricity. This study confirms previous clinical and empirical investigations on the selectivity of first-person motor awareness deficits in anosognosia for hemiplegia and experimentally demonstrates for the first time that verbal egocentric 3PP-taking can positively influence 1PP body awareness.


Perception ◽  
2018 ◽  
Vol 47 (5) ◽  
pp. 477-491 ◽  
Author(s):  
Barbara Caola ◽  
Martina Montalti ◽  
Alessandro Zanini ◽  
Antony Leadbetter ◽  
Matteo Martini

Classically, body ownership illusions are triggered by cross-modal synchronous stimulations, and hampered by multisensory inconsistencies. Nonetheless, the boundaries of such illusions have been proven to be highly plastic. In this immersive virtual reality study, we explored whether it is possible to induce a sense of body ownership over a virtual body part during visuomotor inconsistencies, with or without the aid of concomitant visuo-tactile stimulations. From a first-person perspective, participants watched a virtual tube moving or an avatar’s arm moving, with or without concomitant synchronous visuo-tactile stimulations on their hand. Three different virtual arm/tube speeds were also investigated, while all participants kept their real arms still. The subjective reports show that synchronous visuo-tactile stimulations effectively counteract the effect of visuomotor inconsistencies, but at slow arm movements, a feeling of body ownership might be successfully induced even without concomitant multisensory correspondences. Possible therapeutical implications of these findings are discussed.


2005 ◽  
Vol 93 (2) ◽  
pp. 1020-1034 ◽  
Author(s):  
Eiichi Naito ◽  
Per E. Roland ◽  
Christian Grefkes ◽  
H. J. Choi ◽  
Simon Eickhoff ◽  
...  

We have previously shown that motor areas are engaged when subjects experience illusory limb movements elicited by tendon vibration. However, traditionally cytoarchitectonic area 2 is held responsible for kinesthesia. Here we use functional magnetic resonance imaging and cytoarchitectural mapping to examine whether area 2 is engaged in kinesthesia, whether it is engaged bilaterally because area 2 in non-human primates has strong callosal connections, which other areas are active members of the network for kinesthesia, and if there is a dominance for the right hemisphere in kinesthesia as has been suggested. Ten right-handed blindfolded healthy subjects participated. The tendon of the extensor carpi ulnaris muscles of the right or left hand was vibrated at 80 Hz, which elicited illusory palmar flexion in an immobile hand (illusion). As control we applied identical stimuli to the skin over the processus styloideus ulnae, which did not elicit any illusions (vibration). We found robust activations in cortical motor areas [areas 4a, 4p, 6; dorsal premotor cortex (PMD) and bilateral supplementary motor area (SMA)] and ipsilateral cerebellum during kinesthetic illusions (illusion-vibration). The illusions also activated contralateral area 2 and right area 2 was active in common irrespective of illusions of right or left hand. Right areas 44, 45, anterior part of intraparietal region (IP1) and caudo-lateral part of parietal opercular region (OP1), cortex rostral to PMD, anterior insula and superior temporal gyrus were also activated in common during illusions of right or left hand. These right-sided areas were significantly more activated than the corresponding areas in the left hemisphere. The present data, together with our previous results, suggest that human kinesthesia is associated with a network of active brain areas that consists of motor areas, cerebellum, and the right fronto-parietal areas including high-order somatosensory areas. Furthermore, our results provide evidence for a right hemisphere dominance for perception of limb movement.


1992 ◽  
Vol 36 (18) ◽  
pp. 1368-1372
Author(s):  
Itiel E. Dror

Air Force pilots and control subjects were tested on a visual “mental rotation” task. Nine of the 16 pilots, as well as all of the 16 control subjects, required more time to rotate greater angular distances. The performance of the other 7 pilots was unique: their response time did not increase with greater angular rotations. The results suggest that visual mental rotation can be accomplished by at least two different processes. One process involves incremental object rotations in a multi-step mapping –like an actual physical rotation of an object– going through intermediate stages. This process requires more time to rotate greater angular distances. The other process involves direct translation in a single-step mapping. In this process, the starting position transforms into the final position in one mapping without any intermediate steps, and thus does not require more time to rotate greater angular rotation. The lack of intermediate stages, which may allow small perturbations in location to be corrected, affects the accuracy of this process; this is particularly apparent when more complex stimuli are rotated. The pilots who did not show incremental rotation effects had different and distinct error patterns, their errors increased when rotating the more complex stimuli.


2020 ◽  
Vol 1 (1) ◽  
Author(s):  
Yuko Okamoto ◽  
Ryo Kitada ◽  
Takanori Kochiyama ◽  
Hiroaki Naruse ◽  
Kai Makita ◽  
...  

Abstract The lateral occipitotemporal cortex (LOTC) that responds to human bodies and body parts has been implicated in social development and neurodevelopmental disorders like autism spectrum disorder (ASD). Neuroimaging studies using a representational similarity analysis (RSA) revealed that body representation in the LOTC of typically developing (TD) adults is categorized into 3 clusters: action effector body parts, noneffector body parts, and face parts. However, its organization of younger people (i.e., children and adolescents) and its association with individual traits remain unclear. In this functional MRI study, TD adults and children/adolescents observed photographs of hands, feet, arms, legs, chests, waists, upper/lower faces, the whole body, and chairs. The univariate analysis showed that fewer child/adolescent participants showed left LOTC activation in response to whole-body images (relative to those of chairs) than adult participants. Contrastingly, the RSA on both age groups revealed a comparable body representation with 3 clusters of body parts in the bilateral LOTC. Hence, this result indicates that, although response to whole-body images can differ, LOTC body part representations for children/ adolescents and adults are highly similar. Furthermore, sensory atypicality is associated with spatial LOTC organization, suggesting the importance of this region for understanding individual difference, which is frequently observed in ASD.


2016 ◽  
Vol 115 (2) ◽  
pp. 858-867 ◽  
Author(s):  
Tomoko Aoki ◽  
Gil Rivlis ◽  
Marc H. Schieber

Many studies of right/left differences in motor performance related to handedness have employed tasks that use arm movements or combined arm and hand movements rather than movements of the fingers per se, the well-known exception being rhythmic finger tapping. We therefore explored four simple tasks performed on a small touchscreen with relatively isolated movements of the index finger. Each task revealed a different right/left performance asymmetry. In a step-tracking Target Task, left-handed subjects showed greater accuracy with the index finger of the dominant left hand than with the nondominant right hand. In a Center-Out Task, right-handed subjects produced trajectories with the nondominant left hand that had greater curvature than those produced with the dominant right hand. In a continuous Circle Tracking Task, slips of the nondominant left index finger showed higher jerk than slips of the dominant right index finger. And in a continuous Complex Tracking Task, the nondominant left index finger showed shorter time lags in tracking the relatively unpredictable target than the dominant right index finger. Our findings are broadly consistent with previous studies indicating left hemisphere specialization for dynamic control and predictable situations vs. right hemisphere specialization for impedance control and unpredictable situations, the specialized contributions of the two hemispheres being combined to different degrees in the right vs. left hands of right-handed vs. left-handed individuals.


Sign in / Sign up

Export Citation Format

Share Document