scholarly journals Periodic Solutions of Nonlinear Relative Motion Satellites

Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 595
Author(s):  
Ashok Kumar Pal ◽  
Elbaz I. Abouelmagd ◽  
Juan Luis García García Guirao ◽  
Dariusz W. Brzeziński

The relative motion of an outline of the rendezvous problem has been studied by assuming that the chief satellite is in circular symmetric orbits. The legitimacy of perturbation techniques and nonlinear relative motion are investigated. The deputy satellite equations of motion with respect to the fixed references at the center of the chief satellite are nonlinear in the general case. We found the periodic solutions of the linear relative motion satellite and for the nonlinear relative motion satellite using the Lindstedt–Poincaré technique. Comparisons among the analytical solutions of linear and nonlinear motions and the obtained solution by the numerical integration of the explicit Euler method for both motions are investigated. We demonstrate that both analytical and numerical solutions of linear motion are symmetric periodic. However, the solutions of nonlinear motion obtained by the Lindstedt–Poincaré technique are periodic and the numerical solutions obtained by integration by using explicit Euler method are non-periodic. Thus, the Lindstedt–Poincaré technique is recommended for designing the periodic solutions. Furthermore, a comparison between linear and nonlinear analytical solutions of relative motion is investigated graphically.

2019 ◽  
Vol 24 (1) ◽  
pp. 199-211
Author(s):  
M. Yürüsoy ◽  
Ö.F. Güler

Abstract The steady-state magnetohydrodynamics (MHD) flow of a third-grade fluid with a variable viscosity parameter between concentric cylinders (annular pipe) with heat transfer is examined. The temperature of annular pipes is assumed to be higher than the temperature of the fluid. Three types of viscosity models were used, i.e., the constant viscosity model, space dependent viscosity model and the Reynolds viscosity model which is dependent on temperature in an exponential manner. Approximate analytical solutions are presented by using the perturbation technique. The variation of velocity and temperature profile in the fluid is analytically calculated. In addition, equations of motion are solved numerically. The numerical solutions obtained are compared with analytical solutions. Thus, the validity intervals of the analytical solutions are determined.


2015 ◽  
Vol 13 (1) ◽  
Author(s):  
Haci Mehmet Baskonus ◽  
Hasan Bulut

AbstractIn this paper, we apply the Fractional Adams-Bashforth-Moulton Method for obtaining the numerical solutions of some linear and nonlinear fractional ordinary differential equations. Then, we construct a table including numerical results for both fractional differential equations. Then, we draw two dimensional surfaces of numerical solutions and analytical solutions by considering the suitable values of parameters. Finally, we use the L


2020 ◽  
Vol 2020 ◽  
pp. 1-7 ◽  
Author(s):  
A. I. Ismail

In this paper, the motion of a disk about a fixed point under the influence of a Newtonian force field and gravity one is considered. We modify the large parameter technique which is achieved by giving the body a sufficiently small angular velocity component r0 about the fixed z-axis of the disk. The periodic solutions of motion are obtained in the neighborhood r0 tends to 0. This case of study is excluded from the previous works because of the appearance of a singular point in the denominator of the obtained solutions. Euler-Poison equations of motion are obtained with their first integrals. These equations are reduced to a quasilinear autonomous system of two degrees of freedom and one first integral. The periodic solutions for this system are obtained under the new initial conditions. Computerizing the obtained periodic solutions through a numerical technique for validation of results is done. Two types of analytical and numerical solutions in the new domain of the angular velocity are obtained. Geometric interpretations of motion are presented to show the orientation of the body at any instant of time t.


2006 ◽  
Vol 74 (3) ◽  
pp. 497-504 ◽  
Author(s):  
Leonard Meirovitch ◽  
Ilhan Tuzcu

A variety of aerospace structures, such as missiles, spacecraft, aircraft, and helicopters, can be modeled as unrestrained flexible bodies. The state equations of motion of such systems tend to be quite involved. Because some of these formulations were carried out decades ago when computers were inadequate, the emphasis was on analytical solutions. This, in turn, prompted some investigators to simplify the formulations beyond all reasons, a practice continuing to this date. In particular, the concept of mean axes has often been used without regard to the negative implications. The allure of the mean axes lies in the fact that in some cases they can help decouple the system inertially. Whereas in the case of some space structures this may mean complete decoupling, in the case of missiles, aircraft, and helicopters the systems remain coupled through the aerodynamic forces. In fact, in the latter case the use of mean axes only complicates matters. With the development of powerful computers and software capable of producing numerical solutions to very complex problems, such as MATLAB and MATHEMATICA, there is no compelling reason to insist on closed-form solutions, particularly when undue simplifications can lead to erroneous results.


Author(s):  
V. F. Edneral ◽  
O. D. Timofeevskaya

Introduction:The method of resonant normal form is based on reducing a system of nonlinear ordinary differential equations to a simpler form, easier to explore. Moreover, for a number of autonomous nonlinear problems, it is possible to obtain explicit formulas which approximate numerical calculations of families of their periodic solutions. Replacing numerical calculations with their precalculated formulas leads to significant savings in computational time. Similar calculations were made earlier, but their accuracy was insufficient, and their complexity was very high.Purpose:Application of the resonant normal form method and a software package developed for these purposes to fourth-order systems in order to increase the calculation speed.Results:It has been shown that with the help of a single algorithm it is possible to study equations of high orders (4th and higher). Comparing the tabulation of the obtained formulas with the numerical solutions of the corresponding equations shows good quantitative agreement. Moreover, the speed of calculation by prepared approximating formulas is orders of magnitude greater than the numerical calculation speed. The obtained approximations can also be successfully applied to unstable solutions. For example, in the Henon — Heyles system, periodic solutions are surrounded by chaotic solutions and, when numerically integrated, the algorithms are often unstable on them.Practical relevance:The developed approach can be used in the simulation of physical and biological systems.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
E. H. Doha ◽  
D. Baleanu ◽  
A. H. Bhrawy ◽  
R. M. Hafez

A new Legendre rational pseudospectral scheme is proposed and developed for solving numerically systems of linear and nonlinear multipantograph equations on a semi-infinite interval. A Legendre rational collocation method based on Legendre rational-Gauss quadrature points is utilized to reduce the solution of such systems to systems of linear and nonlinear algebraic equations. In addition, accurate approximations are achieved by selecting few Legendre rational-Gauss collocation points. The numerical results obtained by this method have been compared with various exact solutions in order to demonstrate the accuracy and efficiency of the proposed method. Indeed, for relatively limited nodes used, the absolute error in our numerical solutions is sufficiently small.


Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck ◽  
Donald E. Amos

This paper provides a solution for two-dimensional heating over a rectangular region on a homogeneous plate. It has application to verification of numerical conduction codes as well as direct application for heating and cooling of electronic equipment. Additionally, it can be applied as a direct solution for the inverse heat conduction problem, most notably used in thermal protection systems for re-entry vehicles. The solutions used in this work are generated using Green’s functions. Two approaches are used which provide solutions for either semi-infinite plates or finite plates with isothermal conditions which are located a long distance from the heating. The methods are both efficient numerically and have extreme accuracy, which can be used to provide additional solution verification. The solutions have components that are shown to have physical significance. The extremely precise nature of analytical solutions allows them to be used as prime standards for their respective transient conduction cases. This extreme precision also allows an accurate calculation of heat flux by finite differences between two points of very close proximity which would not be possible with numerical solutions. This is particularly useful near heated surfaces and near corners. Similarly, sensitivity coefficients for parameter estimation problems can be calculated with extreme precision using this same technique. Another contribution of these solutions is the insight that they can bring. Important dimensionless groups are identified and their influence can be more readily seen than with numerical results. For linear problems, basic heating elements on plates, for example, can be solved to aid in understanding more complex cases. Furthermore these basic solutions can be superimposed both in time and space to obtain solutions for numerous other problems. This paper provides an analytical two-dimensional, transient solution for heating over a rectangular region on a homogeneous square plate. Several methods are available for the solution of such problems. One of the most common is the separation of variables (SOV) method. In the standard implementation of the SOV method, convergence can be slow and accuracy lacking. Another method of generating a solution to this problem makes use of time-partitioning which can produce accurate results. However, numerical integration may be required in these cases, which, in some ways, negates the advantages offered by the analytical solutions. The method given herein requires no numerical integration; it also exhibits exponential series convergence and can provide excellent accuracy. The procedure involves the derivation of previously-unknown simpler forms for the summations, in some cases by virtue of the use of algebraic components. Also, a mathematical identity given in this paper can be used for a variety of related problems.


Sign in / Sign up

Export Citation Format

Share Document