scholarly journals Risk Assessment of Circuit Breakers Using Influence Diagrams with Interval Probabilities

Symmetry ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 737
Author(s):  
Jelena D. Velimirovic ◽  
Aleksandar Janjic

This paper deals with uncertainty, asymmetric information, and risk modelling in a complex power system. The uncertainty is managed by using probability and decision theory methods. More specifically, influence diagrams—as extended Bayesian network functions with interval probabilities represented through credal sets—were chosen for the predictive modelling scenario of replacing the most critical circuit breakers in optimal time. Namely, based on the available data on circuit breakers and other variables that affect the considered model of a complex power system, a group of experts was able to assess the situation using interval probabilities instead of crisp probabilities. Furthermore, the paper examines how the confidence interval width affects decision-making in this context and eliminates the information asymmetry of different experts. Based on the obtained results for each considered interval width separately on the action to be taken over the considered model in order to minimize the risk of the power system failure, it can be concluded that the proposed approach clearly indicates the advantages of using interval probability when making decisions in systems such as the one considered in this paper.

Fuzzy Systems ◽  
2017 ◽  
pp. 987-1002
Author(s):  
Neeti Dugaya ◽  
Smita Shandilya

In this chapter, a fuzzy expert system is developed to assist the operators in fault detection. It requires much less memory to store the database (power system topology and the post fault status of circuit breakers and protective relays). The fuzzy expert system identifies two basic network section sets, Shealthy for the healthy sub network and Sisland for the fault islands, using the post fault status of circuit breakers and relays. It then calculates membership function for each possible fault section. The objective of this calculation is to determine the likelihood of each candidate fault section as the actual fault section. Moreover membership functions provide a convenient means of ranking among possible (or candidate) fault sections, and are the most important factors in decision making. During decision making, the most possible fault section is determined by maximum selection method. In this method most possible fault section is the one which is having highest membership grade. MATLAB code for the proposed scheme is developed and the results obtained in four cases for a power- system network.


Author(s):  
Neeti Dugaya ◽  
Smita Shandilya

In this chapter, a fuzzy expert system is developed to assist the operators in fault detection. It requires much less memory to store the database (power system topology and the post fault status of circuit breakers and protective relays). The fuzzy expert system identifies two basic network section sets, Shealthy for the healthy sub network and Sisland for the fault islands, using the post fault status of circuit breakers and relays. It then calculates membership function for each possible fault section. The objective of this calculation is to determine the likelihood of each candidate fault section as the actual fault section. Moreover membership functions provide a convenient means of ranking among possible (or candidate) fault sections, and are the most important factors in decision making. During decision making, the most possible fault section is determined by maximum selection method. In this method most possible fault section is the one which is having highest membership grade. MATLAB code for the proposed scheme is developed and the results obtained in four cases for a power- system network.


1952 ◽  
Vol 71 (8) ◽  
pp. 721-721
Author(s):  
O. A. Demuth ◽  
Alexander Dovjikov

2015 ◽  
Vol 743 ◽  
pp. 257-262
Author(s):  
Ming Jong Lin

Critical clearing time is to determine the time point of the collapse of the power system when the power system occur transient stability by a huge of failure. So that the one is an important data on protection system in power system. Therefore as an electrical engineer must to look on mostly the point of one to analyze and design in the power. In this paper, through the protection relay and breaker analysis of operation to know the team of protection relay how to complete the automatic monitoring and isolated the fault-equipment in power system. To study and analyze the swing equation and equal area criterion, we found out the relation of critical clearing time is changed with power factor and frequency. The critical clearing time was verified a non-constant value which is changed with the power factor and; if the load power factor is high, the critical clearing time is high but the frequency is high, the critical clearing time is low with system swing in the transient stability. This paper will be verify below each paragraph.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1249 ◽  
Author(s):  
Nnaemeka Sunday Ugwuanyi ◽  
Xavier Kestelyn ◽  
Bogdan Marinescu ◽  
Olivier Thomas

Increasing nonlinearity in today’s grid challenges the conventional small-signal (modal) analysis (SSA) tools. For instance, the interactions among modes, which are not captured by SSA, may play significant roles in a stressed power system. Consequently, alternative nonlinear modal analysis tools, notably Normal Form (NF) and Modal Series (MS) methods are being explored. However, they are computation-intensive due to numerous polynomial coefficients required. This paper proposes a fast NF technique for power system modal interaction investigation, which uses characteristics of system modes to carefully select relevant terms to be considered in the analysis. The Coefficients related to these terms are selectively computed and the resulting approximate model is computationally reduced compared to the one in which all the coefficients are computed. This leads to a very rapid nonlinear modal analysis of the power systems. The reduced model is used to study interactions of modes in a two-area power system where the tested scenarios give same results as the full model, with about 70% reduction in computation time.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1134 ◽  
Author(s):  
Mario Monzón ◽  
Rubén Paz ◽  
Martí Verdaguer ◽  
Luis Suárez ◽  
Pere Badalló ◽  
...  

The use of natural fibres allows reducing environmental impact, due to their natural renewable origin and the lower energy needed for their production and processing. This work presents the mechanical characterization of a newly developed technical textile, with banana fibre treated by enzymes, comparing experimental results with numerical simulation based on the definition of the unit cell at micromechanical level. The experimental test shows that the composite with the fabric of banana fibre presents worse mechanical behaviour than the one with commercial flax fibre. The presence of wool, necessary for producing the yarn, reduces the mechanical properties of the banana textile. The numerical simulation had an acceptable error compared with the experimental results, with a global average error of 9%, showing that the predictive modelling based on the multiscale method is suitable for the design process of this kind of composite.


Mathematics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 123 ◽  
Author(s):  
Bernardo D’Auria ◽  
Alessandro Ferriero

In this paper, we study the optimal stopping-time problems related to a class of Itô diffusions, modeling for example an investment gain, for which the terminal value is a priori known. This could be the case of an insider trading or of the pinning at expiration of stock options. We give the explicit solution to these optimization problems and in particular we provide a class of processes whose optimal barrier has the same form as the one of the Brownian bridge. These processes may be a possible alternative to the Brownian bridge in practice as they could better model real applications. Moreover, we discuss the existence of a process with a prescribed curve as optimal barrier, for any given (decreasing) curve. This gives a modeling approach for the optimal liquidation time, i.e., the optimal time at which the investor should liquidate a position to maximize the gain.


2017 ◽  
Vol 95 ◽  
pp. 03002
Author(s):  
Hendrick ◽  
Chen-Chai Tsai ◽  
Jyun-Teng Jheng ◽  
Zhi-Hao Wang ◽  
Gwo-Jia Jong

Sign in / Sign up

Export Citation Format

Share Document