scholarly journals Identifying the Locations of Atmospheric Pollution Point Source by Using a Hybrid Particle Swarm Optimization

Symmetry ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 985
Author(s):  
Wipawinee Chaiwino ◽  
Panasun Manorot ◽  
Kanyuta Poochinapan ◽  
Thanasak Mouktonglang

This research aims to improve the particle swarm optimization (PSO) algorithm by combining a multidimensional search with a line search to determine the location of the air pollution point sources and their respective emission rates. Both multidimensional search and line search do not require the derivative of the cost function. By exploring a symmetric property of search domain, this innovative search tool incorporating a multidimensional search and line search in the PSO is referred to as the hybrid PSO (HPSO). Measuring the pollutant concentration emanating from the pollution point sources through the aid of sensors represents the first stage in the process of evaluating the efficiency of HPSO. The summation of the square of the differences between the observed concentration and the concentration that is theoretically expected (inverse Gaussian plume model or numerical estimations) is used as a cost function. All experiments in this research are therefore conducted using the HPSO sensing technique. To effectively identify air pollution point sources as well as calculate emission rates, optimum positioning of sensors must also be determined. Moreover, the frame of discussion of this research also involves a detailed comparison of the results obtained by the PSO algorithm, the GA (genetic algorithm) and the HPSO algorithm in terms of single pollutant location detection, respectively. In the case of multiple sources, only the findings based on PSO and HPSO algorithms are taken into consideration. This research eventually verifies and confirms that the HPSO does offer substantially better performance in the measuring of pollutant locations as well as emission rates of the air pollution point sources than the original PSO.

Geophysics ◽  
2019 ◽  
Vol 84 (2) ◽  
pp. E105-E124 ◽  
Author(s):  
Francisco M. Barboza ◽  
Walter E. Medeiros ◽  
Jerbeson M. Santana

We have developed an inversion approach based on particle swarm optimization (PSO) for 2D direct current resistivity data. Once the PSO algorithm is implemented, cost-function changes on constraints and misfit criteria can be easily performed and an approximate invariance of the Lagrange multipliers is obtained if each term of the cost function is properly normalized. More importantly, the interpreter can divide the mesh into partitions and apply a different constraint or combination of constraints in each partition. We explore several restrictions on the log-resistivity variation, either in single or in joint versions, including spatial continuity constraints in the [Formula: see text]-and [Formula: see text]-norms, total variation, sparsity constraints using the discrete cosine transform and Daubechies bases, and minimum moment of inertia constraints to impose concentration of resistive or conductive materials along target axes. In the latter case, the earth surface might be used also as a target axis. In addition, the final state of the PSO algorithm, once a stopping condition has been reached, contains not only the best solution but also a cluster of good suboptimal solutions that can be used for uncertainty analysis. As a result, the interpreter has the flexibility to perform an interpretation process based on a feedback trial-and-error inversion approach, in a similar manner that he/she has when using a friendly forward modeling software. The interpreter can then drive the tentative solutions obtained along the inversion process to incorporate their conceptions about the geologic environment, besides appraising misfit and stability of the solutions. We evaluate synthetic and field data examples. In the first case, we determine how the interpreter can drive the inversion process in a karst environment to image dissolution features. In the second case, we explore a similar situation aiming to optimize borehole locations in fracture zones in crystalline rocks.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2868
Author(s):  
Gong Cheng ◽  
Huangfu Wei

With the transition of the mobile communication networks, the network goal of the Internet of everything further promotes the development of the Internet of Things (IoT) and Wireless Sensor Networks (WSNs). Since the directional sensor has the performance advantage of long-term regional monitoring, how to realize coverage optimization of Directional Sensor Networks (DSNs) becomes more important. The coverage optimization of DSNs is usually solved for one of the variables such as sensor azimuth, sensing radius, and time schedule. To reduce the computational complexity, we propose an optimization coverage scheme with a boundary constraint of eliminating redundancy for DSNs. Combined with Particle Swarm Optimization (PSO) algorithm, a Virtual Angle Boundary-aware Particle Swarm Optimization (VAB-PSO) is designed to reduce the computational burden of optimization problems effectively. The VAB-PSO algorithm generates the boundary constraint position between the sensors according to the relationship among the angles of different sensors, thus obtaining the boundary of particle search and restricting the search space of the algorithm. Meanwhile, different particles search in complementary space to improve the overall efficiency. Experimental results show that the proposed algorithm with a boundary constraint can effectively improve the coverage and convergence speed of the algorithm.


2021 ◽  
pp. 1-17
Author(s):  
J. Shobana ◽  
M. Murali

Text Sentiment analysis is the process of predicting whether a segment of text has opinionated or objective content and analyzing the polarity of the text’s sentiment. Understanding the needs and behavior of the target customer plays a vital role in the success of the business so the sentiment analysis process would help the marketer to improve the quality of the product as well as a shopper to buy the correct product. Due to its automatic learning capability, deep learning is the current research interest in Natural language processing. Skip-gram architecture is used in the proposed model for better extraction of the semantic relationships as well as contextual information of words. However, the main contribution of this work is Adaptive Particle Swarm Optimization (APSO) algorithm based LSTM for sentiment analysis. LSTM is used in the proposed model for understanding complex patterns in textual data. To improve the performance of the LSTM, weight parameters are enhanced by presenting the Adaptive PSO algorithm. Opposition based learning (OBL) method combined with PSO algorithm becomes the Adaptive Particle Swarm Optimization (APSO) classifier which assists LSTM in selecting optimal weight for the environment in less number of iterations. So APSO - LSTM ‘s ability in adjusting the attributes such as optimal weights and learning rates combined with the good hyper parameter choices leads to improved accuracy and reduces losses. Extensive experiments were conducted on four datasets proved that our proposed APSO-LSTM model secured higher accuracy over the classical methods such as traditional LSTM, ANN, and SVM. According to simulation results, the proposed model is outperforming other existing models.


Author(s):  
Na Geng ◽  
Zhiting Chen ◽  
Quang A. Nguyen ◽  
Dunwei Gong

AbstractThis paper focuses on the problem of robot rescue task allocation, in which multiple robots and a global optimal algorithm are employed to plan the rescue task allocation. Accordingly, a modified particle swarm optimization (PSO) algorithm, referred to as task allocation PSO (TAPSO), is proposed. Candidate assignment solutions are represented as particles and evolved using an evolutionary process. The proposed TAPSO method is characterized by a flexible assignment decoding scheme to avoid the generation of unfeasible assignments. The maximum number of successful tasks (survivors) is considered as the fitness evaluation criterion under a scenario where the survivors’ survival time is uncertain. To improve the solution, a global best solution update strategy, which updates the global best solution depends on different phases so as to balance the exploration and exploitation, is proposed. TAPSO is tested on different scenarios and compared with other counterpart algorithms to verify its efficiency.


2021 ◽  
Vol 13 (6) ◽  
pp. 1207
Author(s):  
Junfei Yu ◽  
Jingwen Li ◽  
Bing Sun ◽  
Yuming Jiang ◽  
Liying Xu

Synthetic aperture radar (SAR) systems are susceptible to radio frequency interference (RFI). The existence of RFI will cause serious degradation of SAR image quality and a huge risk of target misjudgment, which makes the research on RFI suppression methods receive widespread attention. Since the location of the RFI source is one of the most vital information for achieving RFI spatial filtering, this paper presents a novel location method of multiple independent RFI sources based on direction-of-arrival (DOA) estimation and the non-convex optimization algorithm. It deploys an L-shaped multi-channel array on the SAR system to receive echo signals, and utilizes the two-dimensional estimating signal parameter via rotational invariance techniques (2D-ESPRIT) algorithm to estimate the positional relationship between the RFI source and the SAR system, ultimately combines the DOA estimation results of multiple azimuth time to calculate the geographic location of RFI sources through the particle swarm optimization (PSO) algorithm. Results on simulation experiments prove the effectiveness of the proposed method.


2021 ◽  
Vol 11 (2) ◽  
pp. 839
Author(s):  
Shaofei Sun ◽  
Hongxin Zhang ◽  
Xiaotong Cui ◽  
Liang Dong ◽  
Muhammad Saad Khan ◽  
...  

This paper focuses on electromagnetic information security in communication systems. Classical correlation electromagnetic analysis (CEMA) is known as a powerful way to recover the cryptographic algorithm’s key. In the classical method, only one byte of the key is used while the other bytes are considered as noise, which not only reduces the efficiency but also is a waste of information. In order to take full advantage of useful information, multiple bytes of the key are used. We transform the key into a multidimensional form, and each byte of the key is considered as a dimension. The problem of the right key searching is transformed into the problem of optimizing correlation coefficients of key candidates. The particle swarm optimization (PSO) algorithm is particularly more suited to solve the optimization problems with high dimension and complex structure. In this paper, we applied the PSO algorithm into CEMA to solve multidimensional problems, and we also add a mutation operator to the optimization algorithm to improve the result. Here, we have proposed a multibyte correlation electromagnetic analysis based on particle swarm optimization. We verified our method on a universal test board that is designed for research and development on hardware security. We implemented the Advanced Encryption Standard (AES) cryptographic algorithm on the test board. Experimental results have shown that our method outperforms the classical method; it achieves approximately 13.72% improvement for the corresponding case.


2021 ◽  
Vol 40 (5) ◽  
pp. 9007-9019
Author(s):  
Jyotirmayee Subudhi ◽  
P. Indumathi

Non-Orthogonal Multiple Access (NOMA) provides a positive solution for multiple access issues and meets the criteria of fifth-generation (5G) networks by improving service quality that includes vast convergence and energy efficiency. The problem is formulated for maximizing the sum rate of MIMO-NOMA by assigning power to multiple layers of users. In order to overcome these problems, two distinct evolutionary algorithms are applied. In particular, the recently implemented Salp Swarm Algorithm (SSA) and the prominent Optimization of Particle Swarm (PSO) are utilized in this process. The MIMO-NOMA model optimizes the power allocation by layered transmission using the proposed Joint User Clustering and Salp Particle Swarm Optimization (PPSO) power allocation algorithm. Also, the closed-form expression is extracted from the current Channel State Information (CSI) on the transmitter side for the achievable sum rate. The efficiency of the proposed optimal power allocation algorithm is evaluated by the spectral efficiency, achievable rate, and energy efficiency of 120.8134bits/s/Hz, 98Mbps, and 22.35bits/Joule/Hz respectively. Numerical results have shown that the proposed PSO algorithm has improved performance than the state of art techniques in optimization. The outcomes on the numeric values indicate that the proposed PSO algorithm is capable of accurately improving the initial random solutions and converging to the optimum.


2013 ◽  
Vol 791-793 ◽  
pp. 1423-1426
Author(s):  
Hai Min Wei ◽  
Rong Guang Liu

Project schedule management is the management to each stage of the degree of progress and project final deadline in the project implementation process. Its purpose is to ensure that the project can meet the time constraints under the premise of achieving its overall objectives.When the progress of schedule found deviation in the process of schedule management ,the progress of the plan which have be advanced previously need to adjust.This article mainly discussed to solve the following two questions:establish the schedule optimization model by using the method of linear;discuss the particle swarm optimization (PSO) algorithm and its parameters which have effect on the algorithm:Particle swarm optimization (PSO) algorithm is presented in the time limited project and the application of a cost optimization.


Sign in / Sign up

Export Citation Format

Share Document