scholarly journals Laboratory Investigation of Hydraulic Parameters on Inclined Drop Equipped with Fishway Elements

Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1643
Author(s):  
Rasoul Daneshfaraz ◽  
Ehsan Aminvash ◽  
Mohammad Bagherzadeh ◽  
Amir Ghaderi ◽  
Alban Kuriqi ◽  
...  

This study aims to provide a way to increase the energy dissipation of flow in the inclined drop with environmental and economic considerations. Eighty-one experiments were performed on three types of simple inclined drop and inclined drop equipped with hole and without hole fishway elements with a 200~600 L/min flow rate. In this study, the effect of using fishway elements on hydraulic parameters regarding flow pattern, energy dissipation, relative downstream depth, relative aeration length, relative length of the hydraulic jump, and downstream Froude number of an inclined drop was investigated through physical modeling following the symmetry law. The results showed that in all experimental models, with increasing the relative critical depth parameter, the energy dissipation values increase, and the downstream Froude number decreases. The parameters of relative downstream depth, relative length of a hydraulic jump, and relative aeration length also increase with increasing relative critical depth. On average, 88% of the flow energy dissipation increases with the design of the fishway elements on the structure compared to the simple drop. Model M7 (with holes fish elements) shows the highest energy dissipation, and Model M2 (without holes fish elements) has the highest flow aeration length and relative downstream water depth.

Water ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 1801
Author(s):  
Qiulin Li ◽  
Lianxia Li ◽  
Huasheng Liao

The depth of the stilling basin with shallow-water cushion (SBSWC) is a key factor that affects the flow regime of hydraulic jump in the basin. However, the specific depth at which the water cushion is considered as ‘shallow’ has not been stated clearly by far, and only conceptual description is provided. Therefore, in order to define the best depth of SBSWC and its relationship between the Froude number at the inlet of the stilling basin, a large number of experiments were carried out to investigate SBSWC. First of all, 30 cases including five different Froude numbers and six depths were selected for which large eddy simulation (LES) was firstly verified by the experiments and then adopted to calculate the hydraulic characteristics in the stilling basin. Finally, three standards, based on the flow regime of hydraulic jump, the location of the main stream and the energy dissipation rate, were proposed to define the best depth of SBSWC. The three criteria are as follows: (1) a complete hydraulic jump occurs in the basin (2) the water cushion is about 1/10–1/3 deep of the stilling basin, and (3) the energy dissipation rate is more than 70% and the unit volume energy dissipation rate is as high as possible. It showed that the best depth ratio of SBSWC (depth to length ratio) was between 0.1 and 0.3 and it also indicated the best depth increased with the increase in Froude number. The results of the work are of significance to the design and optimizing of SBSWC.


2021 ◽  
Vol 930 (1) ◽  
pp. 012029
Author(s):  
V Dermawan ◽  
Suhardjono ◽  
L Prasetyorini ◽  
S Anam

Abstract Flow conditions on overflow systems can result in construction failure, mainly due to the high flow energy. Stilling basin at downstream of the spillway is useful for reducing flow energy. It can reduce the destructive force of water flow. Controlling the hydraulic jump is an important part that includes the jump’s energy, length, and height. The physical hydraulic model was carried out with several series, by making a series of bottom lowering of horizontal and USBR II stilling basin. The experimental study is expected to represent flow behavior in the overflow system regarding flow conditions and energy dissipation. Based on the analytical calculation of flow velocity, the amount of flow energy that occurs at each control point is calculated. The control points are the starting point of the spillway, the chute way toe, and flow depth after the hydraulic jump. The energy loss can be calculated for each control point, while the efficiency of energy dissipation on stilling basin is calculated at the downstream flow depth after the hydraulic jump. Velocity calculated by dividing discharge per unit width by water depth which is based on the flow depth measurement data in the hydraulic model.


Author(s):  
Rollin H. Hotchkiss ◽  
Emily A. Larson ◽  
David M. Admiraal

Riprap and concrete stilling basins are often built at culvert outlets to keep high-energy flows from scouring the streambed. Two simple alternatives to large basins are examined: a horizontal apron with an end weir and a drop structure with an end weir. The two designs are intended to reduce the flow energy at the outlet by inducing a hydraulic jump within the culvert barrel without the aid of tailwater. This research examines the jump geometry and the effectiveness of each jump type and proposes a design procedure for practicing engineers. The design procedure is applicable to culverts with approach Froude numbers from 2.6 to 6.0. Both designs are effective in reducing outlet velocity 0.7 to 8.5 ft/s (0.21 to 2.59 m/s), momentum 10% to 48%, and energy 6% to 71%. The design layouts allow easy access for maintenance activities.


2007 ◽  
Vol 34 (4) ◽  
pp. 557-564 ◽  
Author(s):  
Zafer Bozkus ◽  
Pinar Çakir ◽  
A Metin Ger

Screens can be utilized efficiently for dissipating energy of water. In this study, water flowing beneath a gate is used to simulate the flow downstream of a small hydraulic structure, and vertically placed screens are used as an alternative tool for energy dissipation. Investigations are conducted using a series of experiments. The porosity, thickness, and location of the screens are the major parameters together with the Froude number of the upstream flow. The experiments cover a range of supercritical Froude numbers between 5.0 and 18.0, porosities between 20% and 60%, and screen locations up to 100 times the undisturbed upstream flow depth. The thicknesses of the screens used are in the order of the undisturbed upstream flow depth. The results show the importance of each parameter in the energy-dissipating performance of the screens and the system. It is observed that screens dissipate significantly more energy than a conventional hydraulic jump within the large range of Froude numbers covered in the study. The results are also in agreement with the results of an earlier similar study.Key words: screen, energy dissipation, hydraulic jump, porosity, supercritical flow.


2019 ◽  
Vol 9 (7) ◽  
Author(s):  
A. Abbaspour ◽  
T. Taghavianpour ◽  
H. Arvanaghi

Abstract Nowadays, the porous screens have been used extensively in open channels to prevent erosion in ditches as the water in supercritical state flows past the screen which forces the formation of a hydraulic jump upstream of the screen and produces significant energy loss. In this investigation, the operation of screens has been studied for supercritical flow and the Froude number in the range of 4.5 to 10.6 on two reverse slopes experimentally. In this study, the parameters included arrangements of screens in both the single and double types, and the angle and distance of screens from the hydraulic jump toe. The screens were studied with a porosity of about 50% with square holes. The study results showed that using of screens on the reverse slope of − 0.025 dissipates more energy compared to reverse slope of − 0.015. The screens with double arrangement have better performance and dissipate more energy than the screens with single arrangement, while the distance of screens from the toe of the hydraulic jump does not have a significant effect on the energy dissipation.


2016 ◽  
Vol 78 (8) ◽  
Author(s):  
Denik Sri Krisnayanti ◽  
Soehardjono Soehardjono ◽  
Very Dermawan ◽  
Mohammad Sholichin

The stepped spillway has increasingly become effective energy dissipation. The stepped spillway has been accepted to be the most powerful hydraulic structure to dissipate large flow energy downstream from spillway crest. The steps act as roughness elements significantly increase the dissipation energy rate. The physical study has performed on flat and pooled stepped spillways with a slope spillway    (θ = 45˚) and number of steps (N): 20 and 40. The experiments were conducted for ten Froude number (Fr) run ranging from 1.117 to 9.909 with 0.700<yc/h<3.00. The focus of research to investigate the relationship between relative energy losses in skimming flow performance against Froude number on various stepped. The effect of number of steps is evident when the relative energy loss increases with the number of steps. In addition, the relative energy loss of flow on pooled steps is dissipating more energy than flat steps.


2020 ◽  
Vol 146 (12) ◽  
pp. 04020079 ◽  
Author(s):  
Juan Francisco Macián-Pérez ◽  
Arnau Bayón ◽  
Rafael García-Bartual ◽  
P. Amparo López-Jiménez ◽  
Francisco José Vallés-Morán

2014 ◽  
Vol 156 (A3) ◽  

The paper revisits some pioneering work of Sir Thomas Havelock on wave patterns with particular attention focused on his graphical method of analysis. Motivated by a desire to explore this method further using numerical methods, it is extended in a simple manner to give three-dimensional illustrations of the wave patterns of a point disturbance in deep and shallow water. All results are confined to the sub- and trans-critical regimes with some obtained very close to the critical Depth Froude Number. Some conclusions are drawn on the wave types produced when operating close to the critical speed and their decay with distance off.


Author(s):  
Ran Tao ◽  
Puxi Li ◽  
Zhifeng Yao ◽  
Ruofu Xiao

Centrifugal impeller is usually designed for water pumping. Fluid get energy from impeller but also lose energy when passing through it. To improve the efficiency and have a better operation stability, it is necessary to understand the flow energy dissipation in centrifugal impeller in pump mode. In this case, a thermodynamic analysis is conducted on a model centrifugal pump unit based on computational fluid dynamics (CFD) simulation. Typical performance curve is found with a positive-slope efficiency curve and a negative-slope head curve. With the decreasing of flow rate, both the impeller head and the flow energy dissipation (FED) will rise up. The FED is found related to the flow regime. The complex undesirable flow pattern induces high FED under off-design conditions especially at very small partial-load. Based on the visualization, FED is found with two main sources including the wall friction and the flow interaction. At over-load and design-load, the wall friction induced FED is dominant. With the decreasing of flow rate, flow interaction induced FED becomes dominant. The typical strong FED sites are found related to the striking, separation, merging and interaction of both smooth flow and vortical flow. The FED analysis will correlate the pump performance estimation and guide the design.


2018 ◽  
Vol 18 (3) ◽  
pp. 93-101
Author(s):  
Mohamed A. Ashour ◽  
Tawab E. Aly ◽  
Mahmoud M. Mostafa

AbstractThe dimensions of many water streams, which satisfy proper hydraulic conditions, may not be compatible with the designed dimensions of an irrigation work that needs to be constructed in some locations. The design requirements of such irrigation works may involve a contraction in the channel width in the required location. This contraction, of course, affects different flow properties and the scour hole formed downstream of these structures. Therefore, the present experimental study aims to investigate the effect of the transition angle and the contraction on the flow properties and on the scour phenomenon downstream water structures. Through 460 experimental runs, carried out on 20 experimental models, the study proved that, for an efficient hydraulic performance and economic design, the best transition angle (θ) for the approaches of water structures is 30° with a relative contracted width ratio (r = b/B) not less than 0.6.


Sign in / Sign up

Export Citation Format

Share Document