scholarly journals Two-Dimensional Index of Departure from the Symmetry Model for Square Contingency Tables with Nominal Categories

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2031
Author(s):  
Tomotaka Momozaki ◽  
Tomoyuki Nakagawa ◽  
Aki Ishii ◽  
Yusuke Saigusa ◽  
Sadao Tomizawa

In the analysis of two-way contingency tables, the degree of departure from independence is measured using measures of association between row and column variables (e.g., Yule’s coefficients of association and of colligation, Cramér’s coefficient, and Goodman and Kruskal’s coefficient). On the other hand, in the analysis of square contingency tables with the same row and column classifications, we are interested in measuring the degree of departure from symmetry rather than independence. Over past years, many studies have proposed various types of indexes based on their power divergence (or diversity index) to represent the degree of departure from symmetry. This study proposes a two-dimensional index to measure the degree of departure from symmetry in terms of the log odds of each symmetric cell with respect to the main diagonal of the table. By measuring the degree of departure from symmetry in terms of the log odds of each symmetric cell, the analysis results are easier to interpret than existing indexes. Numerical experiments show the utility of the proposed two-dimensional index. We show the usefulness of the proposed two-dimensional index by using real data.

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2067
Author(s):  
Shuji Ando ◽  
Hikaru Hoshi ◽  
Aki Ishii ◽  
Sadao Tomizawa

The double symmetry model satisfies both the symmetry and point symmetry models simultaneously. To measure the degree of deviation from the double symmetry model, a two-dimensional index that can concurrently measure the degree of deviation from symmetry and point symmetry is considered. This two-dimensional index is constructed by combining two existing indexes. Although the existing indexes are constructed using power divergence, the existing two-dimensional index that can concurrently measure both symmetries is constructed using only Kullback-Leibler information, which is a special case of power divergence. Previous studies note the importance of using several indexes of divergence to compare the degrees of deviation from a model for several square contingency tables. This study, therefore, proposes a two-dimensional index based on power divergence in order to measure deviation from double symmetry for square contingency tables. Numerical examples show the utility of the proposed two-dimensional index using two datasets.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shuji Ando

Summary This study proposes two original asymmetry models based on ordered scores for square contingency tables with the same row and column ordinal classifications. The proposed models can be applied to cases in which the scores of all categories are known or unknown. In the proposed models, the log odds for an observation falling in the (i, j)th cell instead of the (j, i)th cell are inversely proportional to the difference of the ordered scores corresponding to categories i and j. The asymmetry parameter of the proposed model can be useful for inferring whether the row variable is stochastically greater than the column variable or vice versa. The proposed models constantly hold when the symmetry model holds, but the converse is not necessarily true. This study also examines what is necessary for a model, in addition to the proposed models, to satisfy the symmetry model, and gives separations of the symmetry model using the proposed and marginal mean equality models. We apply real data to show the utility of the proposed models. The proposed models provide a better fit than that of the existing models.


2020 ◽  
Vol 57 (1) ◽  
pp. 23-35
Author(s):  
Yusuke Saigusa ◽  
Tomomasa Takada ◽  
Aki Ishii ◽  
Tomoyuki Nakagawa ◽  
Sadao Tomizawa

SummaryFor square contingency tables with nominal categories, a local symmetry model which indicates the symmetric structure of probabilities for only one pair of symmetric cells is proposed. For ordinal square tables, the present paper proposes (1) another local symmetry model for cumulative probabilities from the upper-right and lower-left corners of the table, and (2) a measure to represent the degree of departure from the proposed model. The measure has the form of a weighted harmonic mean of the diversity index, which includes the Shannon entropy as a special case. Examples are given in which the proposed method is applied to square table data on decayed teeth in Japanese women patients.


Author(s):  
J.L. Carrascosa ◽  
G. Abella ◽  
S. Marco ◽  
M. Muyal ◽  
J.M. Carazo

Chaperonins are a class of proteins characterized by their role as morphogenetic factors. They trantsiently interact with the structural components of certain biological aggregates (viruses, enzymes etc), promoting their correct folding, assembly and, eventually transport. The groEL factor from E. coli is a conspicuous member of the chaperonins, as it promotes the assembly and morphogenesis of bacterial oligomers and/viral structures.We have studied groEL-like factors from two different bacteria:E. coli and B.subtilis. These factors share common morphological features , showing two different views: one is 6-fold, while the other shows 7 morphological units. There is also a correlation between the presence of a dominant 6-fold view and the fact of both bacteria been grown at low temperature (32°C), while the 7-fold is the main view at higher temperatures (42°C). As the two-dimensional projections of groEL were difficult to interprete, we studied their three-dimensional reconstruction by the random conical tilt series method from negatively stained particles.


2020 ◽  
Vol 20 (11) ◽  
pp. 1340-1351 ◽  
Author(s):  
Ponnurengam M. Sivakumar ◽  
Matin Islami ◽  
Ali Zarrabi ◽  
Arezoo Khosravi ◽  
Shohreh Peimanfard

Background and objective: Graphene-based nanomaterials have received increasing attention due to their unique physical-chemical properties including two-dimensional planar structure, large surface area, chemical and mechanical stability, superconductivity and good biocompatibility. On the other hand, graphene-based nanomaterials have been explored as theranostics agents, the combination of therapeutics and diagnostics. In recent years, grafting hydrophilic polymer moieties have been introduced as an efficient approach to improve the properties of graphene-based nanomaterials and obtain new nanoassemblies for cancer therapy. Methods and results: This review would illustrate biodistribution, cellular uptake and toxicity of polymergraphene nanoassemblies and summarize part of successes achieved in cancer treatment using such nanoassemblies. Conclusion: The observations showed successful targeting functionality of the polymer-GO conjugations and demonstrated a reduction of the side effects of anti-cancer drugs for normal tissues.


Author(s):  
Olivier Ozenda ◽  
Epifanio G. Virga

AbstractThe Kirchhoff-Love hypothesis expresses a kinematic constraint that is assumed to be valid for the deformations of a three-dimensional body when one of its dimensions is much smaller than the other two, as is the case for plates. This hypothesis has a long history checkered with the vicissitudes of life: even its paternity has been questioned, and recent rigorous dimension-reduction tools (based on standard $\varGamma $ Γ -convergence) have proven to be incompatible with it. We find that an appropriately revised version of the Kirchhoff-Love hypothesis is a valuable means to derive a two-dimensional variational model for elastic plates from a three-dimensional nonlinear free-energy functional. The bending energies thus obtained for a number of materials also show to contain measures of stretching of the plate’s mid surface (alongside the expected measures of bending). The incompatibility with standard $\varGamma $ Γ -convergence also appears to be removed in the cases where contact with that method and ours can be made.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Jin Chen ◽  
Chao-Hsiang Sheu ◽  
Mikhail Shifman ◽  
Gianni Tallarita ◽  
Alexei Yung

Abstract We study two-dimensional weighted $$ \mathcal{N} $$ N = (2) supersymmetric ℂℙ models with the goal of exploring their infrared (IR) limit. 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) are simplified versions of world-sheet theories on non-Abelian strings in four-dimensional $$ \mathcal{N} $$ N = 2 QCD. In the gauged linear sigma model (GLSM) formulation, 𝕎ℂℙ(N,$$ \tilde{N} $$ N ˜ ) has N charges +1 and $$ \tilde{N} $$ N ˜ charges −1 fields. As well-known, at $$ \tilde{N} $$ N ˜ = N this GLSM is conformal. Its target space is believed to be a non-compact Calabi-Yau manifold. We mostly focus on the N = 2 case, then the Calabi-Yau space is a conifold. On the other hand, in the non-linear sigma model (NLSM) formulation the model has ultra-violet logarithms and does not look conformal. Moreover, its metric is not Ricci-flat. We address this puzzle by studying the renormalization group (RG) flow of the model. We show that the metric of NLSM becomes Ricci-flat in the IR. Moreover, it tends to the known metric of the resolved conifold. We also study a close relative of the 𝕎ℂℙ model — the so called zn model — which in actuality represents the world sheet theory on a non-Abelian semilocal string and show that this zn model has similar RG properties.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1850
Author(s):  
Rashad A. R. Bantan ◽  
Farrukh Jamal ◽  
Christophe Chesneau ◽  
Mohammed Elgarhy

Unit distributions are commonly used in probability and statistics to describe useful quantities with values between 0 and 1, such as proportions, probabilities, and percentages. Some unit distributions are defined in a natural analytical manner, and the others are derived through the transformation of an existing distribution defined in a greater domain. In this article, we introduce the unit gamma/Gompertz distribution, founded on the inverse-exponential scheme and the gamma/Gompertz distribution. The gamma/Gompertz distribution is known to be a very flexible three-parameter lifetime distribution, and we aim to transpose this flexibility to the unit interval. First, we check this aspect with the analytical behavior of the primary functions. It is shown that the probability density function can be increasing, decreasing, “increasing-decreasing” and “decreasing-increasing”, with pliant asymmetric properties. On the other hand, the hazard rate function has monotonically increasing, decreasing, or constant shapes. We complete the theoretical part with some propositions on stochastic ordering, moments, quantiles, and the reliability coefficient. Practically, to estimate the model parameters from unit data, the maximum likelihood method is used. We present some simulation results to evaluate this method. Two applications using real data sets, one on trade shares and the other on flood levels, demonstrate the importance of the new model when compared to other unit models.


1998 ◽  
Vol 25 (4) ◽  
pp. 621-630 ◽  
Author(s):  
Yasser Hassan ◽  
Said M Easa

Coordination of highway horizontal and vertical alignments is based on subjective guidelines in current standards. This paper presents a quantitative analysis of coordinating horizontal and sag vertical curves that are designed using two-dimensional standards. The locations where a horizontal curve should not be positioned relative to a sag vertical curve (called red zones) are identified. In the red zone, the available sight distance (computed using three-dimensional models) is less than the required sight distance. Two types of red zones, based on stopping sight distance (SSD) and preview sight distance (PVSD), are examined. The SSD red zone corresponds to the locations where an overlap between a horizontal curve and a sag vertical curve should be avoided because the three-dimensional sight distance will be less than the required SSD. The PVSD red zone corresponds to the locations where a horizontal curve should not start because drivers will not be able to perceive it and safely react to it. The SSD red zones exist for practical highway alignment parameters, and therefore designers should check the alignments for potential SSD red zones. The range of SSD red zones was found to depend on the different alignment parameters, especially the superelevation rate. On the other hand, the results showed that the PVSD red zones exist only for large values of the required PVSD, and therefore this type of red zones is not critical. This paper should be of particular interest to the highway designers and professionals concerned with highway safety.Key words: sight distance, red zone, combined alignment.


Sign in / Sign up

Export Citation Format

Share Document