scholarly journals Channel Modeling and Analysis for the Sensor Network Inside Tower Buildings

Symmetry ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2154
Author(s):  
Wenping Xie ◽  
Xiaomin Chen ◽  
Kai Mao ◽  
Yuxin Liu ◽  
Lugao Yin ◽  
...  

Symmetry-based channel digital twin is a great technology which can reproduce the communication channel of real scenes for performance evaluation of the wireless sensor network (WSN) inside tower buildings, based on the ray tracing (RT) method and machine learning (ML) theories, a cluster-based channel model is proposed in this paper. Meanwhile, an improved k-means method, which considers the weight of different dimensions in the multipath component distance (MCD) is presented for clustering, which has better clustering performance over the sparsity-based algorithm and traditional k-means algorithm. Moreover, the channel parameters such as cluster delay and cluster power are also investigated. On this basis, the communication performance of WSN, i.e., bit error rate (BER) and channel capacity are derived and analyzed. The simulation and analysis results show that the cluster model based on the RT method can get approximately equivalent channel impulse response (CIR), and the BER of proposed model is consistent with the simulated one. These results can provide reference for the node layout and optimization of WSN inside tower buildings.

Author(s):  
Low Tang Jung ◽  
Azween Abdullah

This chapter presents the studies and analysis on the approaches, the concepts, and the ideas on data packet size optimization for data packets transmission in underwater wireless sensor network (UWSN) and terrestrial wireless sensor network (TWSN) communications. These studies are based on the related prior works accomplished by the UWSN and TWSN research communities. It should be mentioned here that the bulk of the studies and analysis would be on the data packet size optimization techniques or approaches rather than on the communication channel modeling, but the channel model is deemed essential to support the optimization approaches. The various optimization solutions proposed in the prior arts are dealt with in depth to explore their feasibilities to accommodate the data packet size optimization algorithm proposed by the various researchers. This chapter starts off with the studies and analysis on prior arts found in UWSN and then moves on to the similar works found elsewhere in the TWSN communications counterparts. A comparison on some important issues related to data packet size optimization approaches used in UWSN and TWSN communications are summarized in a table at the end of this chapter. The findings in this chapter may be helpful to readers who are interested in the R&D of data packet size optimization techniques with the intention to formulate new data packet size optimization framework or algorithms.


Author(s):  
Satya Ranjan Biswal ◽  
Santosh Kumar Swain

: Security is one of the important concern in both types of the network. The network may be wired or wireless. In case of wireless network security provisioning is more difficult in comparison to wired network. Wireless Sensor Network (WSN) is also a type of wireless network. And due to resource constraints WSN is vulnerable against malware attacks. Initially, the malware (virus, worm, malicious code, etc.) targets a single node of WSN for attack. When a node of WSN gets infected then automatically start to spread in the network. If nodes are strongly correlated the malware spreads quickly in the network. On the other hand, if nodes are weakly correlated the speed of malware spread is slow. A mathematical model is proposed for the study of malware propagation dynamics in WSN with combination of spatial correlation and epidemic theory. This model is based on epidemic theory with spatial correlation. The proposed model is Susceptible-Exposed-Infectious-Recover-Dead (SEIRD) with spatial correlation. We deduced the expression of basic reproduction number. It helps in the study of malware propagation dynamics in WSN. The stability analysis of the network has been investigated through proposed model. This model also helps in reduction of redundant information and saving of sensor nodes’ energy in WSN. The theoretical investigation verified by simulation results. A spatial correlation based epidemic model has been formulated for the study of dynamic behaviour of malware attacks in WSN.


2020 ◽  
pp. 1-16
Author(s):  
Monali Prajapati ◽  
Dr. Jay Joshi

In the wireless sensor network (WSN), wireless communication is said to be the dominant power-consuming operation and it is a challenging one. Virtual Multiple-Input–Multiple-Output (V-MIMO) technology is considered to be the energy-saving method in the WSN. In this paper, a novel multihop virtual MIMO communication protocol is designed in the WSN via cross-layer design to enhance the energy efficiency, reliability, and end-to-end (ETE) and Quality of Service (QoS) provisioning. On the basis of the proposed protocol, the optimal set of parameters concerning the transmission and the overall consumed energy by each of the packets is found. Furthermore, the modeling of ETE latency and throughput of the protocol takes place with respect to the bit-error-rate (BER). A novel hybrid optimization algorithm referred as Flight Straight Moth Updated Particle Swarm Optimization (FS-MUP) is introduced to find the optimal BER that meets the QoS, ETE requirements of each link with lower power consumption. Finally, the performance of the proposed model is evaluated over the extant models in terms of Energy Consumption and BER as well.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xin Chen ◽  
Yong Fang ◽  
Weidong Xiang ◽  
Liang Zhou

In this paper, an extension of spatial channel model (SCM) for vehicle-to-vehicle (V2V) communication channel in roadside scattering environment is investigated for the first time theoretically and by simulations. Subsequently, to efficiently describe the roadside scattering environment and reflect the nonstationary properties of V2V channels, the proposed SCM V2V model divides the scattering objects into three categories of clusters according to the location of effective scatterers by introducing critical distance. We derive general expressions for the most important statistical properties of V2V channels, such as channel impulse response, power spectral density, angular power density, autocorrelation function, and Doppler spread of the proposed model. The impact of vehicle speed, traffic density, and angle of departure, angle of arrival, and other statistical performances on the V2V channel model is thoroughly discussed. Numerical simulation results are presented to validate the accuracy and effectiveness of the proposed model.


Mathematics ◽  
2019 ◽  
Vol 7 (5) ◽  
pp. 396 ◽  
Author(s):  
Zizhen Zhang ◽  
Soumen Kundu ◽  
Ruibin Wei

In this paper, we investigate a delayed SEIQRS-V epidemic model for propagation of malicious codes in a wireless sensor network. The communication radius and distributed density of nodes is considered in the proposed model. With this model, first we find a feasible region which is invariant and where the solutions of our model are positive. To show that the system is locally asymptotically stable, a Lyapunov function is constructed. After that, sufficient conditions for local stability and existence of Hopf bifurcation are derived by analyzing the distribution of the roots of the corresponding characteristic equation. Finally, numerical simulations are presented to verify the obtained theoretical results and to analyze the effects of some parameters on the dynamical behavior of the proposed model in the paper.


2013 ◽  
Vol 811 ◽  
pp. 501-507
Author(s):  
Qin Xue

With the energy market demand increasing, coal mine safety production monitoring system based on wireless sensor network has been widely used. The traditional wireless sensor network synchronization method based on packet switching is very difficult to achieve synchronization accuracy and energy consumption at the same time. Paper presents a cooperative time synchronization method based on packet message exchange (CTS), Analysis of synchronous packet information interaction process, the introduction of cooperative relay will not change the synchronization precision. Synchronous grouping information for sending and receiving ends for receiving and forwarding to reduce the transmission power, reduce energy consumption through cooperative relay. Theoretical analysis and computer simulation show that in the condition of not reducing the synchronization precision, it can achieve the purpose of reducing energy consumption by introducing the cooperative relay in the horizon channel model can reach 4 times the energy efficiency.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ivan Milovanovic ◽  
Caslav Stefanovic

In this work, we analyze performances of the unmanned aerial vehicle- (UAV-) assisted wireless powered sensor communication, where sensor transmission ability is supported by the UAV. Harvested energy from the UAV-broadcasted signal is further used at the sensor nodes for uplink information transmission to the UAV, over assumed shadowed κ − μ fading channels. Here, we observe a general scenario in which due to the flight conditions of the UAV, the channel’s content include the LOS components affected by the shadowing effect, modeled by the general shadowed κ − μ channel model, which can be reduced to other well-known channel models as its special cases. We derive closed-form expressions for the outage probability (OP) of such wireless sensor network (WSN) operating in shadowed κ − μ fading environments. Further, we analyze the optimization of time allocation to minimize OP subjected to UAV’s energy constraints. The impact of channel parameters on observed performance measures is analyzed, and obtained results are numerically validated.


Sign in / Sign up

Export Citation Format

Share Document