scholarly journals Acute Toxic and Genotoxic Effects of Aluminum and Manganese Using In Vitro Models

Toxics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 153
Author(s):  
Luiza Flavia Veiga Francisco ◽  
Dbora da Silva Baldivia ◽  
Bruno do Amaral Crispim ◽  
Syla Maria Farias Ferraz Klafke ◽  
Pamella Fukuda de Castilho ◽  
...  

The objective of this study was to use the same concentrations of aluminum (Al) and manganese (Mn) detected previously in groundwater above those permitted by Brazilian law and assess their cytotoxic and genotoxic effects in hamster ovary cell lines and their mutagenic effects through the Salmonella microsome assay. Chinese hamster ovary (CHO) and CHO-XRS5 cells were treated with different concentrations of Al and Mn (0.2 to 2.0 mg/L and 0.1 to 3.0 mg/L, respectively). The Ames test was used to analyze the concentrations of Al and Mn ranging from 0.025 to 1.0 mg/L and 0.0125 to 1.5 mg/L, respectively. Both metals showed cytotoxic effects on both cell lines and two bacterial strains (TA98 and TA100). The genotoxic effects of the highest concentrations of Al and Mn in cell lines showed nuclear buds, micronuclei, and DNA damage; however, none of the concentrations showed a positive mutagenic response in the Ames test. This is one of the few studies to demonstrate the cytotoxic effects of Al and Mn through the Ames test. In addition, the metals caused genomic instability in cell lines. Therefore, this study may help hasten the review of established regulatory standards for human consumption of groundwater.

Author(s):  
Motaharesadat Hosseini ◽  
Anoosheh Sharifan

Background: Natural products constitute more than half of all biomolecules lately being used in clinical settings. Mannoprotein derived from the yeast cell wall has found full biotechnological applications. Objective: This study was intended to investigate antioxidant, anticancer, and toxicological properties of Kluyveromyces marxianus mannoprotein (KM). Methods: The KM extract was obtained through a sequence of operations, including centrifugation for cell isolation, precipi-tation with potassium citrate/ sodium metabisulfite, and recovery and purification. Its antioxidant, growth inhibition, macro-phage mitogenic, and toxic activities were evaluated for its future use in the biomedical field. Results: Significantly inhibitory effects of KM were obtained on reactive species. It showed antiproliferative activity against HeLa (human cervical adenocarcinoma) and MCF-7 (human breast cancer) cell lines with no toxic effects on HUVECs (human umbilical vein endothelial cells). The in vitro model of CHO-K1 (Chinese hamster ovary) cell lines did not show the cytotoxic and genotoxic of KM. Also, it enhanced macrophage activity in terms of nitric oxide (NO) production and viabil-ity. No sign of acute toxicity was found in BALB/c mice, and body weight remained unchanged in guinea pigs over three months. Conclusion: Comprehensive biological evaluations in this study are expected to expand the potential of KM as a natural material.


2016 ◽  
Vol 35 (10) ◽  
pp. 1108-1115
Author(s):  
M Charehsaz ◽  
FE Onen-Bayram ◽  
H Sipahi ◽  
K Buran ◽  
AK Giri ◽  
...  

ALC67 is an N-acylated thiazolidine compound with promising anticancer activity that led to the recent discovery of a series of 3-propionyl thiazolidine-4-carboxylic acid ethyl esters as a family of novel antiproliferative agents. Since the mutagenic and genotoxic properties of marketed anticancer molecules constitute a main issue to be addressed, this study focused on the analysis of the mutagenicity, antimutagenecity, and genotoxicity of this molecule. The mutagenicity and antimutagenicity of ALC67 were evaluated by Ames test performed on Salmonella TA98 and TA100 strains. The genotoxicity of this molecule was investigated in the chromosomal aberration assay on human lymphocytes. All results revealed that the analyzed structure is not mutagenic in the two Salmonella strains tested and was not genotoxic in human lymphocytes in vitro. On the other hand, it showed a weak antimutagenic effect in these two bacterial strains. The above results indicate that after performing some more mutagenicity assays using the other recommended strains, this compound can be safely used for the development of new structures exhibiting anticancer activities.


Author(s):  
Zeinab Abedian ◽  
Niloofar Jenabian ◽  
Ali Akbar Moghadamnia ◽  
Ebrahim Zabihi ◽  
Roghayeh Pourbagher ◽  
...  

Objective/ Background: Cancer is still the most common cause of morbidity in world and new powerful anticancer agents without severe side effects from natural sources is important. Methods: The evaluation of cytotoxicity and apoptosis induction was carried out in MCF-7,HeLa and Saos-2 as cancerous cell lines with different histological origin and human fibroblast served as control normal cell. The cells were treated with different concentrations of chitosan and the cytotoxicity was determined using MTT assay after 24, 48 and 72 h .The mode of death was evaluated by flow cytometry . Results: While both types of chitosan showed significant concentration-dependently cytotoxic effects against the three cancerous cell lines, fibroblast cells showed somehow more compatibility with chitosan. On the other hand, there were no significant differences between LMWC and HMWC cytotoxicity in all cell lines. The flow cytometry results showed the apoptosis pattern of death more in Saos-2 and HeLa while necrosis was more observable with MCF7. Also higher viability with both types of chitosan was seen in fibroblast as normal cells Conclusion: Chitosan shows anticancerous effect against 3 cancerous cell lines, while it is compatible with normal diploid fibroblast cells. Furthermore, it seems that the molecular weight of chitosan does not affect its anticancerous property.


2015 ◽  
Vol 39 (1) ◽  
pp. 18-29 ◽  
Author(s):  
Hans G. Drexler ◽  
Stefan Ehrentraut ◽  
Stefan Nagel ◽  
Sonja Eberth ◽  
Roderick A.F. MacLeod

1988 ◽  
Vol 16 (1) ◽  
pp. 32-37
Author(s):  
Margherita Ferro ◽  
Anna Maria Bassi ◽  
Giorgio Nanni

Two hepatoma cell cultures were examined as in vitro models to be used in genotoxicity and cytotoxicity tests without the addition of bioactivating enzymes. The MH1C1, and HTC hepatoma lines were used in this study to establish their sensitivity to a number of xenobiotics, namely, cyclophosphamide (CP), the classical positive control in bioactivation tests; benzaldehyde (BA), a short-chain aldehyde; and 4-hydroxynonenal (HNE), a major toxic end-product of the peroxidative degradation of cell membrane lipids. As a first approach, we compared the following cytotoxicity tests: release of lactate dehydrogenase (LDH), and colony formation efficiency (CF). Colony-forming cells were exposed to the drugs according to different procedures, before or after the anchorage phase. The leakage of LDH into the medium following exposure of both cell lines to HNE, CP and BA for up to 24 hours was found not to be a good index of cytotoxicity. A better indicator of cytotoxicity was CF, as evaluated by exposure of the cells 24 hours after seeding. The effects were detectable at very low concentrations, corresponding to 10, 90 and 100μM for HNE, CP and BA, respectively. The impairment of CF efficiency was dose-dependent and time-dependent, and several differences between the two cell lines were observed.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Victoria I. Turilova ◽  
Tatyana S. Goryachaya ◽  
Tatiana K. Yakovleva

Abstract Background Chinese hamster ovary cell lines, also known as CHO cells, represent a large family of related, yet quite different, cell lines which are metabolic mutants derived from the original cell line, CHO-ori. Dihydrofolate reductase-deficient DXB-11 cell line, one of the first CHO derivatives, serves as the host cell line for the production of therapeutic proteins. It is generally assumed that DXB-11 is identical to DUKX or CHO-DUK cell lines, but, to our knowledge, DXB-11 karyotype has not been described yet. Results Using differential staining approaches (G-, C-banding and Ag-staining), we presented DXB-11 karyotype and revealed that karyotypes of DXB-11 and CHO-DUK cells have a number of differences. Although the number of chromosomes is equal—20 in each cell line—DXB-11 has normal chromosomes of the 1st and 5th pairs as well as an intact chromosome 8. Besides, in DXB-11 line, chromosome der(Z9) includes the material of chromosomes X and 6, whereas in CHO-DUK it results from the translocation of chromosomes 1 and 6. Ag-positive nucleolar organizer regions were revealed in the long arms of chromosome del(4)(q11q12) and both chromosome 5 homologues, as well as in the short arms of chromosomes 8 and add(8)(q11). Only 19 from 112 (16.96%) DXB-11 cells display identical chromosome complement accepted as the main structural variant of karyotype. The karyotype heterogeneity of all the rest of cells (93, 83.04%) occurs due to clonal and nonclonal additional structural rearrangements of chromosomes. Estimation of the frequency of chromosome involvement in these rearrangements allowed us to reveal that chromosomes 9, der(X)t(X;3;4), del(2)(p21p23), del(2)(q11q22) /Z2, der(4) /Z7, add(6)(p11) /Z8 are the most stable, whereas mar2, probably der(10), is the most unstable chromosome. A comparative analysis of our own and literary data on CHO karyotypes allowed to designate conservative chromosomes, both normal and rearranged, that remain unchanged in different CHO cell lines, as well as variable chromosomes that determine the individuality of karyotypes of CHO derivatives. Conclusion DXB-11and CHO-DUK cell lines differ in karyotypes. The revealed differential instability of DXB-11 chromosomes is likely not incidental and results in karyotype heterogeneity of cell population.


2002 ◽  
Vol 65 (2) ◽  
pp. 943-946 ◽  
Author(s):  
Roberto Maggio ◽  
Pascaline Barbier ◽  
Andrea Toso ◽  
Davide Barletta ◽  
Giovanni U. Corsini

Sign in / Sign up

Export Citation Format

Share Document