scholarly journals Degradation of 2,4,6-Trinitrotoluene (TNT): Involvement of Protocatechuate 3,4-Dioxygenase (P34O) in Buttiauxella sp. S19-1

Toxics ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 231
Author(s):  
Miao Xu ◽  
Dong Liu ◽  
Ping Sun ◽  
Yunuo Li ◽  
Ming Wu ◽  
...  

Extensive use and disposal of 2,4,6-trinitrotoluene (TNT), a primary constituent of explosives, pollutes the environment and causes severe damage to human health. Complete mineralization of TNT via bacterial degradation has recently gained research interest as an effective method for the restoration of contaminated sites. Here, screening for TNT degradation by six selected bacteria revealed that Buttiauxella sp. S19-1, possesses the strongest degrading ability. Moreover, BuP34O (a gene encoding for protocatechuate 3,4-dioxygenase—P34O, a key enzyme in the β-ketoadipate pathway) was upregulated during TNT degradation. A knockout of BuP34O in S19-1 to generate S-M1 mutant strain caused a marked reduction in TNT degradation efficiency compared to S19-1. Additionally, the EM1 mutant strain (Escherichia coli DH5α transfected with BuP34O) showed higher degradation efficiency than DH5α. Gas chromatography mass spectrometry (GC-MS) analysis of TNT degradation by S19-1 revealed 4-amino-2,6-dinitrotolune (ADNT) as the intermediate metabolite of TNT. Furthermore, the recombinant protein P34O (rP34O) expressed the activity of 2.46 µmol/min·mg. Our findings present the first report on the involvement of P34O in bacterial degradation of TNT and its metabolites, suggesting that P34O could catalyze downstream reactions in the TNT degradation pathway. In addition, the TNT-degrading ability of S19-1, a Gram-negative marine-derived bacterium, presents enormous potential for restoration of TNT-contaminated seas.

2018 ◽  
Vol 84 (19) ◽  
Author(s):  
Zhangong Yang ◽  
Wankui Jiang ◽  
Xiaohan Wang ◽  
Tong Cheng ◽  
Desong Zhang ◽  
...  

ABSTRACTIprodione [3-(3,5-dichlorophenyl)N-isopropyl-2,4-dioxoimidazolidine-1-carboxamide] is a highly effective broad-spectrum dicarboxamide fungicide. Several bacteria with iprodione-degrading capabilities have been reported; however, the enzymes and genes involved in this process have not been characterized. In this study, an iprodione-degrading strain,Paenarthrobactersp. strain YJN-5, was isolated and characterized. Strain YJN-5 degraded iprodione through the typical pathway, with hydrolysis of its N-1 amide bond toN-(3,5-dichlorophenyl)-2,4-dioxoimidazolidine as the initial step. TheipaHgene, encoding a novel amidase responsible for this step, was cloned from strain YJN-5 by the shotgun method. IpaH shares the highest similarity (40%) with an indoleacetamide hydrolase (IAHH) fromBradyrhizobium diazoefficiensUSDA 110. IpaH displayed maximal enzymatic activity at 35°C and pH 7.5, and it was not a metalloamidase. ThekcatandKmof IpaH against iprodione were 22.42 s−1and 7.33 μM, respectively, and the catalytic efficiency value (kcat/Km) was 3.09 μM−1s−1. IpaH has a Ser-Ser-Lys motif, which is conserved among members of the amidase signature family. The replacement of Lys82, Ser157, and Ser181 with alanine in IpaH led to the complete loss of enzymatic activity. Furthermore, strain YJN-5M lost the ability to degrade iprodione, suggesting thatipaHis the only gene responsible for the initial iprodione degradation step. TheipaHgene could also be amplified from another previously reported iprodione-degrading strain,Microbacteriumsp. strain YJN-G. The sequence similarity between the two IpaHs at the amino acid level was 98%, indicating that conservation of IpaH exists in different strains.IMPORTANCEIprodione is a widely used dicarboxamide fungicide, and its residue has been frequently detected in the environment. The U.S. Environmental Protection Agency has classified iprodione as moderately toxic to small animals and a probable carcinogen to humans. Bacterial degradation of iprodione has been widely investigated. Previous studies demonstrate that hydrolysis of its N-1 amide bond is the initial step in the typical bacterial degradation pathway of iprodione; however, enzymes or genes involved in iprodione degradation have yet to be reported. In this study, a novelipaHgene encoding an amidase responsible for the initial degradation step of iprodione inPaenarthrobactersp. strain YJN-5 was cloned. In addition, the characteristics and key amino acid sites of IpaH were investigated. These findings enhance our understanding of the microbial degradation mechanism of iprodione.


Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 407
Author(s):  
Natalia S. Nemeria ◽  
Xu Zhang ◽  
Joao Leandro ◽  
Jieyu Zhou ◽  
Luying Yang ◽  
...  

The 2-oxoglutarate dehydrogenase complex (OGDHc) is a key enzyme in the tricarboxylic acid (TCA) cycle and represents one of the major regulators of mitochondrial metabolism through NADH and reactive oxygen species levels. The OGDHc impacts cell metabolic and cell signaling pathways through the coupling of 2-oxoglutarate metabolism to gene transcription related to tumor cell proliferation and aging. DHTKD1 is a gene encoding 2-oxoadipate dehydrogenase (E1a), which functions in the L-lysine degradation pathway. The potentially damaging variants in DHTKD1 have been associated to the (neuro) pathogenesis of several diseases. Evidence was obtained for the formation of a hybrid complex between the OGDHc and E1a, suggesting a potential cross talk between the two metabolic pathways and raising fundamental questions about their assembly. Here we reviewed the recent findings and advances in understanding of protein-protein interactions in OGDHc and 2-oxoadipate dehydrogenase complex (OADHc), an understanding that will create a scaffold to help design approaches to mitigate the effects of diseases associated with dysfunction of the TCA cycle or lysine degradation. A combination of biochemical, biophysical and structural approaches such as chemical cross-linking MS and cryo-EM appears particularly promising to provide vital information for the assembly of 2-oxoacid dehydrogenase complexes, their function and regulation.


2003 ◽  
Vol 185 (1) ◽  
pp. 302-310 ◽  
Author(s):  
MingHua Dai ◽  
Julie Bull Rogers ◽  
Joseph R. Warner ◽  
Shelley D. Copley

ABSTRACT The first step in the pentachlorophenol (PCP) degradation pathway in Sphingobium chlorophenolicum has been believed for more than a decade to be conversion of PCP to tetrachlorohydroquinone. We show here that PCP is actually converted to tetrachlorobenzoquinone, which is subsequently reduced to tetrachlorohydroquinone by PcpD, a protein that had previously been suggested to be a PCP hydroxylase reductase. pcpD is immediately downstream of pcpB, the gene encoding PCP hydroxylase (PCP monooxygenase). Expression of PcpD is induced in the presence of PCP. A mutant strain lacking functional PcpD has an impaired ability to remove PCP from the medium. In contrast, the mutant strain removes tetrachlorophenol from the medium at the same rate as does the wild-type strain. These data suggest that PcpD catalyzes a step necessary for degradation of PCP, but not for degradation of tetrachlorophenol. Based upon the known mechanisms of flavin monooxygenases such as PCP hydroxylase, hydroxylation of PCP should produce tetrachlorobenzoquinone, while hydroxylation of tetrachlorophenol should produce tetrachlorohydroquinone. Thus, we proposed and verified experimentally that PcpD is a tetrachlorobenzoquinone reductase that catalyzes the NADPH-dependent reduction of tetrachlorobenzoquinone to tetrachlorohydroquinone.


2006 ◽  
Vol 72 (1) ◽  
pp. 622-627 ◽  
Author(s):  
Birgit Mertens ◽  
Nico Boon ◽  
Willy Verstraete

ABSTRACT This study investigated the feasibility of a slow-release inoculation approach as a bioaugmentation strategy for the degradation of lindane (γ-hexachlorocyclohexane [γ-HCH]). Slow-release inoculation of Sphingomonas sp. γ 1-7 was established in both liquid and soil slurry microcosms using open-ended silicone tubes in which the bacteria are encapsulated in a protective nutrient-rich matrix. The capacity of the encapsulated cells to degrade lindane under aerobic conditions was evaluated in comparison with inoculation of free-living cells. Encapsulation of cells in tubes caused the removal of lindane by adsorption to the silicone tubes but also ensured prolonged biodegradation activity. Lindane degradation persisted 2.2 and 1.4 times longer for liquid and soil slurry microcosms, respectively, than that for inoculation with free cells. While inoculation of free-living cells led to a loss in lindane-degrading activity in limited time intervals, encapsulation in tubes allowed for a more stable actively degrading community. The loss in degrading activity was linked to the loss of the linA gene, encoding γ-HCH dehydrochlorinase (LinA), which is involved in the initial steps of the lindane degradation pathway. This work shows that a slow-release inoculation approach using a catabolic strain encapsulated in open-ended tubes is a promising bioaugmentation tool for contaminated sites, as it can enhance pollutant removal and can prolong the degrading activity in comparison with traditional inoculation strategies.


Microbiology ◽  
2009 ◽  
Vol 155 (12) ◽  
pp. 4069-4083 ◽  
Author(s):  
Markus Kunze ◽  
Kay F. Zerlin ◽  
Alexander Retzlaff ◽  
Jens O. Pohl ◽  
Eberhard Schmidt ◽  
...  

Pseudomonas putida GJ31 has been reported to grow on chlorobenzene using a meta-cleavage pathway with chlorocatechol 2,3-dioxygenase (CbzE) as a key enzyme. The CbzE-encoding gene was found to be localized on the 180 kb plasmid pKW1 in a cbzTEXGS cluster, which is flanked by transposases and encodes only a partial (chloro)catechol meta-cleavage pathway comprising ferredoxin reductase, chlorocatechol 2,3-dioxygenase, an unknown protein, 2-hydroxymuconic semialdehyde dehydrogenase and glutathione S-transferase. Downstream of cbzTEXGS are located cbzJ, encoding a novel type of 2-hydroxypent-2,4-dienoate hydratase, and a transposon region highly similar to Tn5501. Upstream of cbzTEXGS, traNEOFG transfer genes were found. The search for gene clusters possibly completing the (chloro)catechol metabolic pathway of GJ31 revealed the presence of two additional catabolic gene clusters on pKW1. The mhpRBCDFETP cluster encodes enzymes for the dissimilation of 2,3-dihydroxyphenylpropionate in a novel arrangement characterized by the absence of a gene encoding 3-(3-hydroxyphenyl)propionate monooxygenase and the presence of a GntR-type regulator, whereas the nahINLOMKJ cluster encodes part of the naphthalene metabolic pathway. Transcription studies supported their possible involvement in chlorobenzene degradation. The upper pathway cluster, comprising genes encoding a chlorobenzene dioxygenase and a chlorobenzene dihydrodiol dehydrogenase, was localized on the chromosome. A high level of transcription in response to chlorobenzene revealed it to be crucial for chlorobenzene degradation. The chlorobenzene degradation pathway in strain GJ31 is thus a mosaic encoded by four gene clusters.


2021 ◽  
pp. 030098582110021
Author(s):  
Yuta Takaichi ◽  
James K. Chambers ◽  
Moeko Shiroma-Kohyama ◽  
Makoto Haritani ◽  
Yumi Une ◽  
...  

Canavan disease is an autosomal recessive leukodystrophy caused by mutations in the gene encoding aspartoacylase (ASPA), which hydrolyses N-acetylaspartate (NAA) to acetate and aspartate. A similar feline neurodegenerative disease associated with a mutation in the ASPA gene is reported herein. Comprehensive clinical, genetic, and pathological analyses were performed on 4 affected cats. Gait disturbance and head tremors initially appeared at 1 to 19 months of age. These cats eventually exhibited dysstasia and seizures and died at 7 to 53 months of age. Magnetic resonance imaging of the brain revealed diffuse symmetrical intensity change of the cerebral cortex, brainstem, and cerebellum. Gas chromatography–mass spectrometry analysis of urine showed significant excretion of NAA. Genetic analysis of the 4 affected cats identified a missense mutation (c.859G>C) in exon 6 of the ASPA gene, which was not detected in 4 neurologically intact cats examined as controls. Postmortem analysis revealed vacuolar changes predominantly distributed in the gray matter of the cerebrum and brain stem as well as in the cerebellar Purkinje cell layer. Immunohistochemically, these vacuoles were surrounded by neurofilaments and sometimes contained MBP- and Olig2-positive cells. Ultrastructurally, a large number of intracytoplasmic vacuoles containing mitochondria and electron-dense granules were detected in the cerebral cortex. All 4 cats were diagnosed as spongy encephalopathy with a mutation in the ASPA gene, a syndrome analogous to human Canavan disease. The histopathological findings suggest that feline ASPA deficiency induces intracytoplasmic edema in neurons and oligodendrocytes, resulting in spongy degeneration of the central nervous system.


2010 ◽  
Vol 76 (9) ◽  
pp. 2884-2894 ◽  
Author(s):  
Efraín Manilla-Pérez ◽  
Alvin Brian Lange ◽  
Stephan Hetzler ◽  
Marc Wältermann ◽  
Rainer Kalscheuer ◽  
...  

ABSTRACT In many microorganisms, the key enzyme responsible for catalyzing the last step in triacylglycerol (TAG) and wax ester (WE) biosynthesis is an unspecific acyltransferase which is also referred to as wax ester synthase/acyl coenzyme A (acyl-CoA):diacylglycerol acyltransferase (WS/DGAT; AtfA). The importance and function of two AtfA homologues (AtfA1 and AtfA2) in the biosynthesis of TAGs and WEs in the hydrocarbon-degrading marine bacterium Alcanivorax borkumensis SK2 have been described recently. However, after the disruption of both the AtfA1 and AtfA2 genes, reduced but substantial accumulation of TAGs was still observed, indicating the existence of an alternative TAG biosynthesis pathway. In this study, transposon-induced mutagenesis was applied to an atfA1 atfA2 double mutant to screen for A. borkumensis mutants totally defective in biosynthesis of neutral lipids in order to identify additional enzymes involved in the biosynthesis of these lipids. At the same time, we have searched for a totally TAG-negative mutant in order to study the function of TAGs in A. borkumensis. Thirteen fluorescence-negative mutants were identified on Nile red ONR7a agar plates and analyzed for their abilities to synthesize lipids. Among these, mutant 2 M131 was no longer able to synthesize and accumulate TAGs if pyruvate was used as the sole carbon source. The transposon insertion was localized in a gene encoding a putative cytochrome c family protein (ABO_1185). Growth and TAG accumulation experiments showed that the disruption of this gene resulted in the absence of TAGs in 2 M131 but that growth was not affected. In cells of A. borkumensis SK2 grown on pyruvate as the sole carbon source, TAGs represented about 11% of the dry weight of the cells, while in the mutant 2 M131, TAGs were not detected by thin-layer and gas chromatography analyses. Starvation and lipid mobilization experiments revealed that the lipids play an important role in the survival of the cells. The function of neutral lipids in A. borkumensis SK2 is discussed.


2002 ◽  
Vol 184 (22) ◽  
pp. 6123-6129 ◽  
Author(s):  
Min Cao ◽  
John D. Helmann

ABSTRACT Bacitracin resistance is normally conferred by either of two major mechanisms, the BcrABC transporter, which pumps out bacitracin, or BacA, an undecaprenol kinase that provides C55-isoprenyl phosphate by de novo synthesis. We demonstrate that the Bacillus subtilis bcrC (ywoA) gene, encoding a putative bacitracin transport permease, is an important bacitracin resistance determinant. A bcrC mutant strain had an eightfold-higher sensitivity to bacitracin. Expression of bcrC initiated from a single promoter site that could be recognized by either of two extracytoplasmic function (ECF) σ factors, σX or σM. Bacitracin induced expression of bcrC, and this induction was dependent on σM but not on σX. Under inducing conditions, expression was primarily dependent on σM. As a consequence, a sigM mutant was fourfold more sensitive to bacitracin, while the sigX mutant was only slightly sensitive. A sigX sigM double mutant was similar to a bcrC mutant in sensitivity. These results support the suggestion that one function of B. subtilis ECF σ factors is to coordinate antibiotic stress responses.


2007 ◽  
Vol 189 (24) ◽  
pp. 8901-8913 ◽  
Author(s):  
Antje Labes ◽  
Peter Schönheit

ABSTRACT The hyperthermophilic archaeon Archaeoglobus fulgidus strain 7324 has been shown to grow on starch and sulfate and thus represents the first sulfate reducer able to degrade polymeric sugars. The enzymes involved in starch degradation to glucose 6-phosphate were studied. In extracts of starch-grown cells the activities of the classical starch degradation enzymes, α-amylase and amylopullulanase, could not be detected. Instead, evidence is presented here that A. fulgidus utilizes an unusual pathway of starch degradation involving cyclodextrins as intermediates. The pathway comprises the combined action of an extracellular cyclodextrin glucanotransferase (CGTase) converting starch to cyclodextrins and the intracellular conversion of cyclodextrins to glucose 6-phosphate via cyclodextrinase (CDase), maltodextrin phosphorylase (Mal-P), and phosphoglucomutase (PGM). These enzymes, which are all induced after growth on starch, were characterized. CGTase catalyzed the conversion of starch to mainly β-cyclodextrin. The gene encoding CGTase was cloned and sequenced and showed highest similarity to a glucanotransferase from Thermococcus litoralis. After transport of the cyclodextrins into the cell by a transport system to be defined, these molecules are linearized via a CDase, catalyzing exclusively the ring opening of the cyclodextrins to the respective maltooligodextrins. These are degraded by a Mal-P to glucose 1-phosphate. Finally, PGM catalyzes the conversion of glucose 1-phosphate to glucose 6-phosphate, which is further degraded to pyruvate via the modified Embden-Meyerhof pathway.


2004 ◽  
Vol 186 (14) ◽  
pp. 4528-4534 ◽  
Author(s):  
Nicola Zamboni ◽  
Eliane Fischer ◽  
Dietmar Laudert ◽  
Stéphane Aymerich ◽  
Hans-Peter Hohmann ◽  
...  

ABSTRACT Despite the importance of the oxidative pentose phosphate (PP) pathway as a major source of reducing power and metabolic intermediates for biosynthetic processes, almost no direct genetic or biochemical evidence is available for Bacillus subtilis. Using a combination of knockout mutations in known and putative genes of the oxidative PP pathway and 13C-labeling experiments, we demonstrated that yqjI encodes the NADP+-dependent 6-P-gluconate dehydrogenase, as was hypothesized previously from sequence similarities. Moreover, YqjI was the predominant isoenzyme during glucose and gluconate catabolism, and its role in the oxidative PP pathway could not be played by either of two homologues, GntZ and YqeC. This conclusion is in contrast to the generally held view that GntZ is the relevant isoform; hence, we propose a new designation for yqjI, gndA, the monocistronic gene encoding the principal 6-P-gluconate dehydrogenase. Although we demonstrated the NAD+-dependent 6-P-gluconate dehydrogenase activity of GntZ, gntZ mutants exhibited no detectable phenotype on glucose, and GntZ did not contribute to PP pathway fluxes during growth on glucose. Since gntZ mutants grew normally on gluconate, the functional role of GntZ remains obscure, as does the role of the third homologue, YqeC. Knockout of the glucose-6-P dehydrogenase-encoding zwf gene was primarily compensated for by increased glycolytic fluxes, but about 5% of the catabolic flux was rerouted through the gluconate bypass with glucose dehydrogenase as the key enzyme.


Sign in / Sign up

Export Citation Format

Share Document