scholarly journals Transformations of Selected Fusarium Toxins and Their Modified Forms During Malt Loaf Production

Toxins ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 385
Author(s):  
Marcin Bryła ◽  
Edyta Ksieniewicz-Woźniak ◽  
Agnieszka Waśkiewicz ◽  
Tomoya Yoshinari ◽  
Krystyna Szymczyk ◽  
...  

An increasing number of studies have found that modified mycotoxins, such as free mycotoxins, naturally occur in food, and severely impact food safety. The present study investigated concentrations of trichothecenes nivalenol (NIV), deoxynivalenol (DON), and zearalenone (ZEN), together with their modified forms, nivalenol-3-glucoside (NIV-3G), deoxynivalenol-3-glucoside (DON-3G), and zearalenone-14-glucoside (ZEN-14G) and zearalenone-14-sulfate (ZEN-14S), respectively, at successive stages of malt loaf production (flour, dough kneading/fermentation, loaf baking). Toxins in bakery products originate in flour produced from wheat grain that is naturally contaminated with Fusarium culmorum. Mycotoxin concentrations were determined using high-performance liquid chromatography-high resolution mass spectrometry, and did not significantly change during the successive stages of bread production. After the dough kneading/fermentation stage, concentrations of NIV-3G and DON-3G were slightly increased, whereas those of ZEN and ZEN-14S were slightly decreased. The largest average decrease (21%) was found in ZEN-14G. After the baking stage, the average concentrations of NIV-3G, DON-3G, ZEN-14S, and ZEN-14G in the loaf crumb and crust decreased by 23%, 28%, 27%, and 20%, respectively, compared with those in the dough. During this technical process, the concentration of ZEN-14G in loaf crumb significantly decreased by an average of 48%, and those of ZEN, ZEN-14S, and ZEN-14G in loaf crust decreased by an average of 29%, 42%, and 48%, respectively. Considering the possibility of modified mycotoxins degradation to free forms, as well as the ability to synthesize them from free forms during technological processes, it would be prudent to consider them together during analysis.

2016 ◽  
Vol 9 (3) ◽  
pp. 409-417 ◽  
Author(s):  
I. Reinholds ◽  
G. Juodeikiene ◽  
E. Bartkiene ◽  
D. Zadeike ◽  
V. Bartkevics ◽  
...  

The influence of ozone (O3) gas on reducing the contamination with Fusarium mycotoxins in malting wheat grains was investigated. Ultra-high performance liquid chromatography coupled to triple quadrupole tandem mass spectrometry (UHPLC-QqQ-MS/MS) and Orbitrap high resolution mass spectrometry (UHPLC-Orbitrap-HRMS) were used to determine mycotoxins in wheat grains before and 40 to 130 min after the exposure to 20 mg/l O3. Pearson’s analysis (R2=0.96-0.98) showed a good correlation between the performance efficiency of both mass spectrometry quantification techniques. The concentrations of determined mycotoxins (zearalenone (ZEA): 19.5-459 µg/kg, deoxynivalenol (DON): 3,370-4,620 µg/kg, T-2 toxin: 19.5-35.4 µg/kg, and HT-2 toxin: 258-819 µg/kg) decreased notably, depending on the duration of contact with ozone. A notable elimination of ZEA, HT-2, and T-2 in wheat grain was observed: the content of these compounds was reduced on average by 58.6, 64.6, and 62%, respectively, already after 40 min of ozonation. The effect was less pronounced in the case of DON, for which the average degradation rate reached the maximum of only 25% after 130 min exposure. We conclude that ozonation for up to 130 min was effective for reducing the content of most mycotoxins determined in this study, except for DON, in contaminated grains to concentrations below the acceptable maximum levels in wheat in accordance to the EU regulations.


Toxins ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 110 ◽  
Author(s):  
Tim Birr ◽  
Tolke Jensen ◽  
Nils Preußke ◽  
Frank D. Sönnichsen ◽  
Marthe De Boevre ◽  
...  

Forage maize is often infected by mycotoxin-producing Fusarium fungi during plant growth, which represent a serious health risk to exposed animals. Deoxynivalenol (DON) and zearalenone (ZEN) are among the most important Fusarium mycotoxins, but little is known about the occurrence of their modified forms in forage maize. To assess the mycotoxin contamination in Northern Germany, 120 natural contaminated forage maize samples of four cultivars from several locations were analysed by liquid chromatography-high resolution mass spectrometry (LC-HRMS) for DON and ZEN and their modified forms deoxynivalenol-3-glucoside (DON3G), the sum of 3- and 15-acetyl-deoxynivalenol (3+15-AcDON), α- and β-zearalenol (α-ZEL, β-ZEL). DON and ZEN occurred with high incidences (100 and 96%) and a wide range of concentrations, reaching levels up to 10,972 and 3910 µg/kg, respectively. Almost half of the samples (46%) exceeded the guidance value in complementary and complete feeding stuffs for ZEN (500 µg/kg), and 9% for DON (5000 µg/kg). The DON related mycotoxins DON3G and 3+15-AcDON were also present in almost all samples (100 and 97%) with amounts of up to 3038 and 2237 µg/kg and a wide range of concentrations. For the ZEN metabolites α- and β-ZEL lower incidences were detected (59 and 32%) with concentrations of up to 423 and 203 µg/kg, respectively. Forage maize samples were contaminated with at least three co-occurring mycotoxins, whereby 95% of all samples contained four or more mycotoxins with DON, DON3G, 3+15-AcDON, and ZEN co-occurring in 93%, together with α-ZEL in 57% of all samples. Positive correlations were established between concentrations of the co-occurring mycotoxins, especially between DON and its modified forms. Averaged over all samples, ratios of DON3G/DON and 3+15-AcDON/DON were similar, 20.2 and 20.5 mol%; cultivar-specific mean ratios ranged from 14.6 to 24.3 mol% and 15.8 to 24.0 mol%, respectively. In total, 40.7 mol% of the measured DON concentration was present in the modified forms DON3G and 3+15-AcDON. The α-ZEL/ZEN ratio was 6.2 mol%, ranging from 5.2 to 8.6 mol% between cultivars. These results demonstrate that modified mycotoxins contribute substantially to the overall mycotoxin contamination in forage maize. To avoid a considerable underestimation, it is necessary to analyse modified mycotoxins in future mycotoxin monitoring programs together with their parent forms.


2017 ◽  
Vol 7 (3) ◽  
pp. 1083-1095
Author(s):  
Malgorzata Glosek Sobieraj ◽  
Bozena Cwalina-Ambroziak ◽  
Agnieszka Waskiewicz ◽  
Adam Perczak ◽  
Arkadiusz Stepien

Winter wheat cv. Boomer was grown in a field-plot experiment in Tomaszkowo near Olsztyn. During the growing season, the severity of Fusarium head blight (FHB was evaluated on a 5-point scale. The quantitative and qualitative composition of Fusarium fungi colonizing wheat grain was evaluated in a laboratory. The content of Fusarium mycotoxins (deoxynivalenol, DON, nivalenol, NIV, zearalenone, ZEA, fumonisins FB1 and FB2) and ergosterol (ERG) in grain was determined by high-performance liquid chromatography (HPLC). The relationships between the severity of FHB and mycotoxin concentrations in grain were determined by calculating Pearson’s correlation coefficient r in the CORR SAS procedure. The effect of microelement fertilizers on the severity of FHB, the species composition of Fusarium fungi colonizing winter wheat grains and mycotoxin concentrations in grain were determined.Analyses of winter wheat spikes revealed that FHB was less severe in 2012 (healthy ears in the NPK+Mn treatment and the lowest value of the infection index 1% was noted in the absolute control treatment) than in 2013 (the most evident symptoms of FHB in the NPK+Nano-Gro treatment – infection index of approx. 12%). Mineral fertilization, i.e. NPK, NPK with microelements (Cu, Zn, Mn) and NPK with the Nano-Gro® organic growth stimulator, reduced the production of trichothecenes, ZEA and fumonisins B1 and B2 in both years of the study. The highest levels of DON and NIV were noted in winter wheat grain in 2012 in control, control/NPK, NPK+Cu and NPK+Mn treatments. Toxin-producing fungi: Fusarium culmorum, F. poae, Gibberella avenacea, G. zeae were isolated most frequently from winter wheat grain in the above treatments. The severity of FHB was not significantly correlated with the concentrations of ERG, FB1, FB2 and ZEA in grain. A negative correlation was observed between the severity of FHB vs. DON and NIV levels in grain.  


Sign in / Sign up

Export Citation Format

Share Document