scholarly journals Diversity of Mycobiota in Spanish Grape Berries and Selection of Hanseniaspora uvarum U1 to Prevent Mycotoxin Contamination

Toxins ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 649
Author(s):  
Carolina Gómez-Albarrán ◽  
Clara Melguizo ◽  
Belén Patiño ◽  
Covadonga Vázquez ◽  
Jéssica Gil-Serna

The occurrence of mycotoxins on grapes poses a high risk for food safety; thus, it is necessary to implement effective prevention methods. In this work, a metagenomic approach revealed the presence of important mycotoxigenic fungi in grape berries, including Aspergillus flavus, Aspergillus niger aggregate species, or Aspergillus section Circumdati. However, A. carbonarius was not detected in any sample. One of the samples was not contaminated by any mycotoxigenic species, and, therefore, it was selected for the isolation of potential biocontrol agents. In this context, Hanseniaspora uvarum U1 was selected for biocontrol in vitro assays. The results showed that this yeast is able to reduce the growth rate of the main ochratoxigenic and aflatoxigenic Aspergillus spp. occurring on grapes. Moreover, H. uvarum U1 seems to be an effective detoxifying agent for aflatoxin B1 and ochratoxin A, probably mediated by the mechanisms of adsorption to the cell wall and other active mechanisms. Therefore, H. uvarum U1 should be considered in an integrated approach to preventing AFB1 and OTA in grapes due to its potential as a biocontrol and detoxifying agent.

Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1717-1722 ◽  
Author(s):  
RJ Berenson ◽  
WI Bensinger ◽  
RS Hill ◽  
RG Andrews ◽  
J Garcia-Lopez ◽  
...  

Abstract The CD34 antigen is expressed by 1% to 4% of human and baboon marrow cells, including virtually all hematopoietic progenitors detectable by in vitro assays. Previous work from our laboratory has shown that CD34+ marrow cells can engraft lethally irradiated baboons. Because the CD34 antigen has not been detected on most solid tumors, positive selection of CD34+ cells may be used to provide marrow cells capable of engraftment, but depleted of tumor cells. In seven patients with stage IV breast cancer and two patients with stage IV neuroblastoma, 2.5 to 17.5 x 10(9) marrow cells were separated by immunoadsorption with the anti-CD34 antibody 12–8 and 50 to 260 x 10(6) positively selected cells were recovered that were 64 +/- 16% (range 35% to 92%) CD34+. The patients received 1.0 to 5.2 x 10(6) CD34-enriched cells/kg after marrow ablative therapy. Six patients engrafted, achieving granulocyte counts of greater than 500/mm3 at 34 +/- 10 (range 21 to 47) days and platelets counts of greater than 20,000/mm3 at 46 +/- 14 (range 28 to 66) days posttransplant. Five of these patients showed durable engraftment until the time of death 82 to 386 days posttransplant. One patient failed to sustain engraftment associated with metastatic marrow disease. Three patients died at days 14, 14, and 17 posttransplant, two of whom had evidence of early engraftment. These studies suggest that CD34+ marrow cells are capable of reconstituting hematopoiesis in humans.


1999 ◽  
Vol 47 (3) ◽  
pp. 165-168
Author(s):  
Dan Eisikowitch ◽  
Hazel Y. Wetzstein

Cultivated and wild almonds are self-incompatible and thus require outcrossing by insect pollinators to produce viable seed. In commercial production, considerable efforts are directed towards placement and selection of cultivars for cross-pollination. However, since honeybees do not distinguish between the different cultivars, stigmas are usually covered by a mixture of both compatible and incompatible pollen. Using in vitro assays, we demonstrated that pollen extracts promoted germination in self pollen with no inhibitory effects observed. Elemental analyses of pollen extracts showed that enhanced levels of Ca, Mg, K, Na, and P were eluted from the grains. From this, we raise the question of possible interaction between compatible and incompatible pollen, and speculate that incompatible pollen grains may support and enhance germination of adjacent compatible pollen.


2019 ◽  
Vol 20 (19) ◽  
pp. 4863 ◽  
Author(s):  
Ilse Sánchez-Lozano ◽  
Claudia Judith Hernández-Guerrero ◽  
Mauricio Muñoz-Ochoa ◽  
Claire Hellio

Biofouling causes major economic losses in the maritime industry. In our site study, the Bay of La Paz (Gulf of California), biofouling on immersed structures is a major problem and is treated mostly with copper-based antifouling paints. Due to the known environmental effect of such treatments, the search for environmentally friendly alternatives in this zone of high biodiversity is a priority to ensure the conservation and protection of species. The aim of this work was to link chemical ecology to marine biotechnology: indeed, the natural defense of macroalgae and sponge was evaluated against biofoulers (biofilm and macrofoulers) from the same geographical zone, and some coatings formulation was done for field assays. Our approach combines in vitro and field bioassays to ensure the selection of the best AF agent prospects. The 1st step consisted of the selection of macroalgae (5 species) and sponges (2 species) with surfaces harboring a low level of colonizers; then extracts were prepared and assayed for toxicity against Artemia, activity towards key marine bacteria involved in biofilm formation in the Bay of La Paz, and the potency to inhibit adhesion of macroorganisms (phenoloxidase assays). The most active and non-toxic extracts were further studied for biofouling activity in the adhesion of the bacteria involved in biofilm formation and through incorporation in marine coatings which were immersed in La Paz Bay during 40 days. In vitro assays demonstrated that extracts of Laurencia gardneri, Sargassum horridum (macroalgae), Haliclona caerulea and Ircinia sp. (sponges) were the most promising. The field test results were of high interest as the best formulation were composed of extracts of H. caerulea and S. horridum and led to a reduction of 32% of biofouling compared with the control.


Plants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1703
Author(s):  
José G. Vázquez-García ◽  
Joel Torra ◽  
Candelario Palma-Bautista ◽  
Ricardo Alcántara-de la Cruz ◽  
Rafael De Prado

Species of Phalaris have historically been controlled by acetyl-coenzyme A carboxylase (ACCase)-inhibiting herbicides; however, overreliance on herbicides with this mechanism of action has resulted in the selection of resistant biotypes. The resistance to ACCase-inhibiting herbicides was characterized in Phalaris brachystachys, Phalaris minor, and Phalaris paradoxa samples collected from winter wheat fields in northern Iran. Three resistant (R) biotypes, one of each Phalaris species, presented high cross-resistance levels to diclofop-methyl, cycloxydim, and pinoxaden, which belong to the chemical families of aryloxyphenoxypropionates (FOPs), cyclohexanediones (DIMs), and phenylpyrazolines (DENs), respectively. The metabolism of 14C-diclofop-methyl contributed to the resistance of the P. brachystachys R biotype, while no evidence of herbicide metabolism was found in P. minor or P. paradoxa. ACCase in vitro assays showed that the target sites were very sensitive to FOP, DIM, and DEN herbicides in the S biotypes of the three species, while the R Phalaris spp. biotypes presented different levels of resistance to these herbicides. ACCase gene sequencing confirmed that cross-resistance in Phalaris species was conferred by specific point mutations. Resistance in the P. brachystachys R biotype was due to target site and non-target-site resistance mechanisms, while in P. minor and P. paradoxa, only an altered target site was found.


ADMET & DMPK ◽  
2018 ◽  
Vol 6 (1) ◽  
pp. 15 ◽  
Author(s):  
Susanne Winiwarter ◽  
Ernst Ahlberg ◽  
Edmund Watson ◽  
Ioana Oprisiu ◽  
Mickael Mogemark ◽  
...  

<p>Each year the pharmaceutical industry makes thousands of compounds, many of which do not meet the desired efficacy or pharmacokinetic properties, describing the absorption, distribution, metabolism and excretion (ADME) behavior. Parameters such as lipophilicity, solubility and metabolic stability can be measured in high throughput in vitro assays. However, a compound needs to be synthesized in order to be tested. In silico models for these endpoints exist, although with varying quality. Such models can be used before synthesis and, together with a potency estimation, influence the decision to make a compound. In practice, it appears that often only one or two predicted properties are considered prior to synthesis, usually including a prediction of lipophilicity. While it is important to use all information when deciding which compound to make, it is somewhat challenging to combine multiple predictions unambiguously. This work investigates the possibility of combining in silico ADME predictions to define the minimum required potency for a specified human dose with sufficient confidence. Using a set of drug discovery compounds,in silico predictions were utilized to compare the relative ranking based on minimum potency calculation with the outcomes from the selection of lead compounds. The approach was also tested on a set of marketed drugs and the influence of the input parameters investigated.</p>


Foods ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 991 ◽  
Author(s):  
Lourdes Amigo ◽  
Daniel Martínez-Maqueda ◽  
Blanca Hernández-Ledesma

Currently, the associations between oxidative stress, inflammation, hypertension, and metabolic disturbances and non-communicable diseases are very well known. Since these risk factors show a preventable character, the searching of food peptides acting against them has become a promising strategy for the design and development of new multifunctional foods or nutraceuticals. In the present study, an integrated approach combining an in silico study and in vitro assays was used to confirm the multifunctionality of milk and meat protein-derived peptides that were similar to or shared amino acids with previously described opioid peptides. By the in silico analysis, 15 of the 27 assayed peptides were found to exert two or more activities, with Angiotensin-converting enzyme (ACE) inhibitory, antioxidant, and opioid being the most commonly found. The in vitro study confirmed ACE-inhibitory and antioxidant activities in 15 and 26 of the 27 synthetic peptides, respectively. Four fragments, RYLGYLE, YLGYLE, YFYPEL, and YPWT, also demonstrated the ability to protect Caco-2 and macrophages RAW264.7 cells from the oxidative damage caused by chemicals. The multifunctionality of these peptides makes them promising agents against oxidative stress-associated diseases.


Blood ◽  
1991 ◽  
Vol 77 (8) ◽  
pp. 1717-1722 ◽  
Author(s):  
RJ Berenson ◽  
WI Bensinger ◽  
RS Hill ◽  
RG Andrews ◽  
J Garcia-Lopez ◽  
...  

The CD34 antigen is expressed by 1% to 4% of human and baboon marrow cells, including virtually all hematopoietic progenitors detectable by in vitro assays. Previous work from our laboratory has shown that CD34+ marrow cells can engraft lethally irradiated baboons. Because the CD34 antigen has not been detected on most solid tumors, positive selection of CD34+ cells may be used to provide marrow cells capable of engraftment, but depleted of tumor cells. In seven patients with stage IV breast cancer and two patients with stage IV neuroblastoma, 2.5 to 17.5 x 10(9) marrow cells were separated by immunoadsorption with the anti-CD34 antibody 12–8 and 50 to 260 x 10(6) positively selected cells were recovered that were 64 +/- 16% (range 35% to 92%) CD34+. The patients received 1.0 to 5.2 x 10(6) CD34-enriched cells/kg after marrow ablative therapy. Six patients engrafted, achieving granulocyte counts of greater than 500/mm3 at 34 +/- 10 (range 21 to 47) days and platelets counts of greater than 20,000/mm3 at 46 +/- 14 (range 28 to 66) days posttransplant. Five of these patients showed durable engraftment until the time of death 82 to 386 days posttransplant. One patient failed to sustain engraftment associated with metastatic marrow disease. Three patients died at days 14, 14, and 17 posttransplant, two of whom had evidence of early engraftment. These studies suggest that CD34+ marrow cells are capable of reconstituting hematopoiesis in humans.


Transfusion ◽  
1980 ◽  
Vol 20 (1) ◽  
pp. 47-54 ◽  
Author(s):  
G Tosato ◽  
FR Appelbaum ◽  
RJ Trapani ◽  
R Dowling ◽  
AB Deisseroth
Keyword(s):  

Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 48
Author(s):  
Emanuele Criscuolo ◽  
Maria Laura De Sciscio ◽  
Filomena Fezza ◽  
Mauro Maccarrone

Accumulated evidence suggests that enhancing the endocannabinoid (eCB) tone, in particular of anandamide (N-arachidonoylethanolamine, AEA), has therapeutic potential in many human diseases. Fatty acid amide hydrolase (FAAH) is a membrane-bound enzyme principally responsible for the degradation of AEA, and thus it represents a relevant target to increase signaling thereof. In recent years, different synthetic and natural compounds have been developed and tested on rat FAAH, but little is known of their effect on the human enzyme. Here, we sought to investigate six major cannabis-derived compounds to compare their action on rat and human FAAHs. To this aim, we combined an in silico analysis of their binding mode and affinity, with in vitro assays of their effect on enzyme activity. This integrated approach allowed to disclose differences in efficacy towards rat and human FAAHs, and to highlight the role of key residues involved in the inhibition of both enzymes. This study suggests that the therapeutic efficacy of compounds targeted towards FAAH should be always tested in vitro on both rat and human enzymes.


Sign in / Sign up

Export Citation Format

Share Document