scholarly journals Biodegradation of Nodularin by a Microcystin-Degrading Bacterium: Performance, Degradation Pathway, and Potential Application

Toxins ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 813
Author(s):  
Mengxuan Yuan ◽  
Qin Ding ◽  
Rongli Sun ◽  
Juan Zhang ◽  
Lihong Yin ◽  
...  

Currently, studies worldwide have comprehensively recognized the importance of Sphingomonadaceae bacteria and the mlrCABD gene cluster in microcystin (MC) degradation. However, knowledge about their degradation of nodularin (NOD) is still unclear. In this study, the degradation mechanism of NOD by Sphingopyxis sp. m6, an efficient MC degrader isolated from Lake Taihu, was investigated in several aspects, including degradation ability, degradation products, and potential application. The strain degraded NOD of 0.50 mg/L with a zero-order rate constant of 0.1656 mg/L/d and a half-life of 36 h. The average degradation rate of NOD was significantly influenced by the temperature, pH, and initial toxin concentrations. Moreover, four different biodegradation products, linear NOD, tetrapeptide H-Glu-Mdhb-MeAsp-Arg-OH, tripeptide H-Mdhb-MeAsp-Arg-OH, and dipeptide H-MeAsp-Arg-OH, were identified, of which the latter two are the first reported. Furthermore, the four mlr genes were upregulated during NOD degradation. The microcystinase MlrA encoded by the mlrA gene hydrolyzes the Arg-Adda bond to generate linear NOD as the first step of NOD biodegradation. Notably, recombinant MlrA showed higher degradation activity and stronger environmental adaptability than the wild strain, suggesting future applications in NOD pollution remediation. This research proposes a relatively complete NOD microbial degradation pathway, which lays a foundation for exploring the mechanisms of NOD degradation by MC-degrading bacteria.

2009 ◽  
Vol 2009 ◽  
pp. 1-8 ◽  
Author(s):  
Kunihiro Okano ◽  
Kazuya Shimizu ◽  
Yukio Kawauchi ◽  
Hideaki Maseda ◽  
Motoo Utsumi ◽  
...  

The pH of the water associated with toxic blooms of cyanobacteria is typically in the alkaline range; however, previously only microcystin-degrading bacteria growing in neutral pH conditions have been isolated. Therefore, we sought to isolate and characterize an alkali-tolerant microcystin-degrading bacterium from a water bloom using microcystin-LR. Analysis of the 16S rRNA gene sequence revealed that the isolated bacterium belonged to the genusSphingopyxis, and the strain was named C-1.Sphingopyxissp. C-1 can grow; at pH 11.0; however, the optimum pH for growth was pH 7.0. The microcystin degradation activity of the bacterium was the greatest between pH 6.52 and pH 8.45 but was also detected at pH 10.0. ThemlrAhomolog encoding the microcystin-degrading enzyme in the C-1 strain was conserved. We concluded that alkali-tolerant microcystin-degrading bacterium played a key role in triggering the rapid degradation of microcystin, leading to the disappearance of toxic water blooms in aquatic environments.


Toxins ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 536 ◽  
Author(s):  
Qin Ding ◽  
Kaiyan Liu ◽  
Kai Xu ◽  
Rongli Sun ◽  
Juan Zhang ◽  
...  

Microcystin-LR (MC-LR) is the most widely distributed microcystin (MC) that is hazardous to environmental safety and public health, due to high toxicity. Microbial degradation is regarded as an effective and environment-friendly method to remove it, however, the performance of MC-degrading bacteria in environmentally relevant pollution concentrations of MC-LR and the degradation pathways remain unclear. In this study, one autochthonous bacterium, Sphingopyxis sp. m6 which exhibited high MC-LR degradation ability, was isolated from Lake Taihu, and the degrading characteristics in environmentally relevant pollution concentrations were demonstrated. In addition, degradation products were identified by utilizing the full scan mode of UPLC-MS/MS. The data illustrated that strain m6 could decompose MC-LR (1–50 μg/L) completely within 4 h. The degradation rates were significantly affected by temperatures, pH and MC-LR concentrations. Moreover, except for the typical degradation products of MC-LR (linearized MC-LR, tetrapeptide, and Adda), there were 8 different products identified, namely, three tripeptides (Adda-Glu-Mdha, Glu-Mdha-Ala, and Leu-MeAsp-Arg), three dipeptides (Glu-Mdha, Mdha-Ala, and MeAsp-Arg) and two amino acids (Leu, and Arg). To our knowledge, this is the first report of Mdha-Ala, MeAsp-Arg, and Leu as MC-LR metabolites. This study expanded microbial degradation pathways of MC-LR, which lays a foundation for exploring degradation mechanisms and eliminating the pollution of microcystins (MCs).


2020 ◽  
Author(s):  
CC Kim ◽  
GR Healey ◽  
WJ Kelly ◽  
ML Patchett ◽  
Z Jordens ◽  
...  

© 2019, International Society for Microbial Ecology. Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.


2019 ◽  
Vol 85 (20) ◽  
Author(s):  
Masae Horinouchi ◽  
Hiroyuki Koshino ◽  
Michal Malon ◽  
Hiroshi Hirota ◽  
Toshiaki Hayashi

ABSTRACT Comamonas testosteroni TA441 degrades steroids via aromatization of the A ring, followed by degradation of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid, mainly by β-oxidation. In this study, we revealed that 7β,9α-dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-coenzyme A (CoA) ester is dehydrogenated by (3S)-3-hydroxylacyl CoA-dehydrogenase, encoded by scdE (ORF27), and then the resultant 9α-hydroxy-7,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is converted by 3-ketoacyl-CoA transferase, encoded by scdF (ORF23). With these results, the whole cycle of β-oxidation on the side chain at C-8 of 9,17-dioxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid is clarified; 9-hydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostan-5-oic acid-CoA ester is dehydrogenated at C-6 by ScdC1C2, followed by hydration by ScdD. 7β,9α-Dihydroxy-17-oxo-1,2,3,4,10,19-hexanorandrostanoic acid-CoA ester then is dehydrogenated by ScdE to be converted to 9α-hydroxy-17-oxo-1,2,3,4,5,6,10,19-octanorandrostan-7-oic acid-CoA ester and acetyl-CoA by ScdF. ScdF is an ortholog of FadA6 in Mycobacterium tuberculosis H37Rv, which was reported as a 3-ketoacyl-CoA transferase involved in C ring cleavage. We also obtained results suggesting that ScdF is also involved in C ring cleavage, but further investigation is required for confirmation. ORF25 and ORF26, located between scdF and scdE, encode enzymes belonging to the amidase superfamily. Disrupting either ORF25 or ORF26 did not affect steroid degradation. Among the bacteria having gene clusters similar to those of tesB to tesR, some have both ORF25- and ORF26-like proteins or only an ORF26-like protein, but others do not have either ORF25- or ORF26-like proteins. ORF25 and ORF26 are not crucial for steroid degradation, yet they might provide clues to elucidate the evolution of bacterial steroid degradation clusters. IMPORTANCE Studies on bacterial steroid degradation were initiated more than 50 years ago primarily to obtain materials for steroid drugs. Steroid-degrading bacteria are globally distributed, and the role of bacterial steroid degradation in the environment as well as in relation to human health is attracting attention. The overall aerobic degradation of the four basic steroidal rings has been proposed; however, there is still much to be revealed to understand the complete degradation pathway. This study aims to uncover the whole steroid degradation process in Comamonas testosteroni TA441 as a model of steroid-degrading bacteria. C. testosteroni is one of the most studied representative steroid-degrading bacteria and is suitable for exploring the degradation pathway, because the involvement of degradation-related genes can be determined by gene disruption. Here, we elucidated the entire β-oxidation cycle of the cleaved B ring. This cycle is essential for the following C and D ring cleavage.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3150
Author(s):  
Jianye Xu ◽  
Siqi Zhou ◽  
Erdeng Du ◽  
Yongjun Sha ◽  
Lu Zheng ◽  
...  

The UV/chlorine process, as a new type of AOP (Advanced Oxidation Process), was utilized to treat amlodipine (AML)-containing water. The influencing factors, including chlorine dose, UV intensity, solution initial pH value, and ammonia concentration, were investigated. The degradation of AML in real water and the relative contributions of OH• and Cl• were also studied. Finally, high-resolution mass spectrometry (HRMS) and GC-MS were used to identify the possible degradation products. The results demonstrated that the AML degradation process was fitted with apparent first-order kinetics. AML degradation had a positive correlation with UV intensity and chlorine dose, and a negative correlation with ammonia concentration. In the presence of ammonia nitrogen and DOM, the removal of AML from real water was reduced. OH• made a dominant percentage contribution of 55.7% to the degradation of AML. Sixteen intermediates were detected and identified. A possible degradation mechanism was also proposed. Acute toxicity tests and risk prediction both illustrated that the complete removal of AML does not guarantee the reduction of acute toxicity, but a prolonged degradation promoted the detoxification of toxic intermediates. The UV/chlorine process can be regarded to be an effective method to remove AML and reduce ecological risk.


2012 ◽  
Author(s):  
Mohd Ariffin Abu Hassan ◽  
Dionissios Mantzavinos ◽  
Ian S. Metcalfe

Kesan frekuensi rendah (20 kHz) penyinaran ultrasonik untuk penyingkiran Linear Alkylbenzene Sulphonates (LAS) daripada larutan berair telah dikaji. Penyinaran ultrasonik terhadap tiga kepekatan berbeza LAS iaitu 500 μgmol/l, 750 μgmol/l and 1000 μgmol/l telah dijalankan. Kesemua eksperimen telah dijalankan pada suhu 30°C, pada frekuensi 20 kHz, kuasa pada 125 W dan masa eksperimen selama 120 minit tanpa pengawalan terhadap pH. Hasil kajian mendapati OH· radikal mendominasi proses pengdegradasian LAS. Kadar degradasi awal bertambah dengan bertambahnya kepekatan LAS di dalam skop kajian. Penghasilan H2O2 didapati rendah dengan proses penyinaran ultrasonik terhadap LAS pada kepekatan LAS yang tinggi. Keputusan penyinaran ultrasonik terhadap LAS dengan kehadiran Br¯ sebagai pemakan radikal membuktikan bahawa OH· radikal mendominasi pengdegradasian LAS. Kata kunci: Surfaktan, ultrasonik, sisa air, jumlah karbon organik (TOC) The effect of low frequency (20 kHz) ultrasonic irradiation on the removal of sodium Linear Alkylbenzene Sulphonates (LAS) from aqueous solutions has been investigated. Sonication of three different initial concentrations of LAS, 500 μgmol/l, 750 μgmol/l and 1000 μgmol/l, were performed. All experiments used a temperature of 30°C, frequency of 20 kHz, power of 125 W, a batch time of 120 min and the pH was left uncontrolled. It was found that the main degradation of LAS at micromolar concentrations proceeded via a reaction with OH· radicals. The initial degradation rate increased with an increase in the surfactant concentration over the whole concentration range studied. The sonolysis of LAS showed a strong inhibition of H2O2 production at a higher concentration. Sonication of LAS in the presence of Br¯ suggested that OH· radicals induced degradation pathway was the dominating sonochemical degradation mechanism. Key words: Surfactants, ultrasonic, wastewater, total organic carbon (TOC)


AMB Express ◽  
2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shuxue Zhao ◽  
Chunhui Hu ◽  
Lizhong Guo ◽  
Kuiran Li ◽  
Hao Yu

2015 ◽  
Vol 73 (7) ◽  
pp. 1500-1510 ◽  
Author(s):  
Qing Zheng ◽  
Yong Dai ◽  
Xiangyun Han

In this study, ozonation treatment of C.I. Reactive Black 5 (RB5) was investigated at various operating parameters. The results showed that the aqueous solution initially containing 200 mg/L RB5 was quickly decolorized at pH 8.0 with an ozone dose of 3.2 g/h. Reaction intermediates with m/z 281, 546, 201, 350, 286 and 222 were elucidated using liquid chromatography-mass spectrometry, while sulfate ion, nitrate ion and three carboxylic acids (i.e., oxalic acid, formic acid, and acetic acid) were identified by ion exchange chromatography. Thus, the cleavage of the azo bond and the introduction of OH groups in the corresponding positions were proposed as the predominant reaction pathway. The detachment of sulfonic groups was also commonly observed during the ozonation treatment. The proposed degradation mechanism was confirmed by frontier electron density calculations, suggesting the feasibility of predicting the major events in the whole ozonation process with the computational method. Compared with RB5 degradation, the reduction of total organic carbon (TOC) proceeded much more slowly, and approximately 54% TOC was removed after 4 h of ozonation. Acute toxicity tests with Photobacterium phosphoreum showed that the toxicity of reaction solution was firstly increased and then decreased to a negligible level after 160 min.


MRS Advances ◽  
2019 ◽  
Vol 5 (12-13) ◽  
pp. 667-677
Author(s):  
Natalia A. Tarazona ◽  
Rainhard Machatschek ◽  
Andreas Lendlein

ABSTRACTPolyhydroxyalkanoates (PHAs) are degradable (co)polyesters synthesized by microorganisms with a variety of side-chains and co-monomer ratios. PHAs can be efficiently hydrolyzed under alkaline conditions and by PHA depolymerase enzymes, altering their physicochemical properties. Using 2D Langmuir monolayers as model system to study the degradation behavior of macromolecules, we aim to describe the the interdependency between the degradation of two PHAs and the surface potential, which influences material-proteins interaction and cell response. We hypothesize that the mechanism of hydrolysis of the labile ester bonds in (co)polyesters defines the evolution of the surface potential, owing to the rate of accumulation of charged insoluble degradation products. The alkaline hydrolysis and the enzymatically catalyzed hydrolysis of PHAs were previously defined as chain-end scission and random-scission mechanisms, respectively. In this study, these two distinct scenarios are used to validate our model. The surface potential change during the chain-end scission of poly(3-R-hydroxybutyrate) (PHB) under alkaline conditions was compared to that of the enzymatically catalyzed hydrolysis (random-scission) of poly[(3-R-hydroxyoctanoate)-co-(3-R-hydroxyhexanoate)] (PHOHHx), using the Langmuir monolayer technique. In the random-scission mechanism the dissolution of degradation products, measured as a decrease in the area per molecule, was preceded by a substantial change of the surface potential, provoked by the negative charge of the broken ester bonds accumulated in the air-water interface. In contrast, when chains degraded via the chain-ends, the surface potential changed in line with the dissolution of the material, presenting a kinetic dependent on the surface area of the monolayers. These results provide a basis for understanding PHAs degradation mechanism. Future research on (co)polymers with different main-chain lengths might extend the elucidation of the surface potential development of (co)polyesters as Langmuir monolayer.


Sign in / Sign up

Export Citation Format

Share Document