scholarly journals Revisiting the Role of Transcription Factors in Coordinating the Defense Response Against Citrus Bark Cracking Viroid Infection in Commercial Hop (Humulus Lupulus L.)

Viruses ◽  
2019 ◽  
Vol 11 (5) ◽  
pp. 419 ◽  
Author(s):  
Vishnu Sukumari Nath ◽  
Ajay Kumar Mishra ◽  
Atul Kumar ◽  
Jaroslav Matoušek ◽  
Jernej Jakše

Transcription factors (TFs) play a major role in controlling gene expression by intricately regulating diverse biological processes such as growth and development, the response to external stimuli and the activation of defense responses. The systematic identification and classification of TF genes are essential to gain insight into their evolutionary history, biological roles, and regulatory networks. In this study, we performed a global mining and characterization of hop TFs and their involvement in Citrus bark cracking viroid CBCVd infection by employing a digital gene expression analysis. Our systematic analysis resulted in the identification of a total of 3,818 putative hop TFs that were classified into 99 families based on their conserved domains. A phylogenetic analysis classified the hop TFs into several subgroups based on a phylogenetic comparison with reference TF proteins from Arabidopsis thaliana providing glimpses of their evolutionary history. Members of the same subfamily and subgroup shared conserved motif compositions. The putative functions of the CBCVd-responsive hop TFs were predicted using their orthologous counterparts in A. thaliana. The analysis of the expression profiling of the CBCVd-responsive hop TFs revealed a massive differential modulation, and the expression of the selected TFs was validated using qRT-PCR. Together, the comprehensive integrated analysis in this study provides better insights into the TF regulatory networks associated with CBCVd infections in the hop, and also offers candidate TF genes for improving the resistance in hop against viroids.

2019 ◽  
Vol 18 ◽  
pp. 117693511985986 ◽  
Author(s):  
Salam A Assi ◽  
Constanze Bonifer ◽  
Peter N Cockerill

Acute myeloid leukemia (AML) is a highly heterogeneous cancer associated with different patterns of gene expression determined by the nature of their DNA mutations. These mutations mostly act to deregulate gene expression by various mechanisms at the level of the nucleus. By performing genome-wide epigenetic profiling of cis-regulatory elements, we found that AML encompasses different mutation-specific subclasses associated with the rewiring of the gene regulatory networks that drive differentiation into different directions away from normal myeloid development. By integrating epigenetic profiles with gene expression and chromatin conformation data, we defined pathways within gene regulation networks that were differentially rewired within each mutation-specific subclass of AML. This analysis revealed 2 major classes of AML: one class defined by mutations in signaling molecules that activate AP-1 via the mitogen-activated protein (MAP) kinase pathway and a second class defined by mutations within genes encoding transcription factors such as RUNX1/CBFβ and C/EBPα. By identifying specific DNA motifs protected from DNase I digestion at cis-regulatory elements, we were able to infer candidate transcription factors bound to these motifs. These integrated analyses allowed the identification of AML subtype-specific core regulatory networks that are required for AML development and maintenance, which could now be targeted in personalized therapies.


2016 ◽  
Vol 113 (13) ◽  
pp. E1835-E1843 ◽  
Author(s):  
Mina Fazlollahi ◽  
Ivor Muroff ◽  
Eunjee Lee ◽  
Helen C. Causton ◽  
Harmen J. Bussemaker

Regulation of gene expression by transcription factors (TFs) is highly dependent on genetic background and interactions with cofactors. Identifying specific context factors is a major challenge that requires new approaches. Here we show that exploiting natural variation is a potent strategy for probing functional interactions within gene regulatory networks. We developed an algorithm to identify genetic polymorphisms that modulate the regulatory connectivity between specific transcription factors and their target genes in vivo. As a proof of principle, we mapped connectivity quantitative trait loci (cQTLs) using parallel genotype and gene expression data for segregants from a cross between two strains of the yeast Saccharomyces cerevisiae. We identified a nonsynonymous mutation in the DIG2 gene as a cQTL for the transcription factor Ste12p and confirmed this prediction empirically. We also identified three polymorphisms in TAF13 as putative modulators of regulation by Gcn4p. Our method has potential for revealing how genetic differences among individuals influence gene regulatory networks in any organism for which gene expression and genotype data are available along with information on binding preferences for transcription factors.


2020 ◽  
Vol 202 (14) ◽  
Author(s):  
Ryan R. Chaparian ◽  
Alyssa S. Ball ◽  
Julia C. van Kessel

ABSTRACT In vibrios, quorum sensing controls hundreds of genes that are required for cell density-specific behaviors including bioluminescence, biofilm formation, competence, secretion, and swarming motility. The central transcription factor in the quorum-sensing pathway is LuxR/HapR, which directly regulates ∼100 genes in the >400-gene regulon of Vibrio harveyi. Among these directly controlled genes are 15 transcription factors, which we predicted would comprise the second tier in the hierarchy of the LuxR regulon. We confirmed that LuxR binds to the promoters of these genes in vitro and quantified the extent of LuxR activation or repression of transcript levels. Transcriptome sequencing (RNA-seq) indicates that most of these transcriptional regulators control only a few genes, with the exception of MetJ, which is a global regulator. The genes regulated by these transcription factors are predicted to be involved in methionine and thiamine biosynthesis, membrane stability, RNA processing, c-di-GMP degradation, sugar transport, and other cellular processes. These data support a hierarchical model in which LuxR directly regulates 15 transcription factors that drive the second level of the gene expression cascade to influence cell density-dependent metabolic states and behaviors in V. harveyi. IMPORTANCE Quorum sensing is important for survival of bacteria in nature and influences the actions of bacterial groups. In the relatively few studied examples of quorum-sensing-controlled genes, these genes are associated with competition or cooperation in complex microbial communities and/or virulence in a host. However, quorum sensing in vibrios controls the expression of hundreds of genes, and their functions are mostly unknown or uncharacterized. In this study, we identify the regulators of the second tier of gene expression in the quorum-sensing system of the aquaculture pathogen Vibrio harveyi. Our identification of regulatory networks and metabolic pathways controlled by quorum sensing can be extended and compared to other Vibrio species to understand the physiology, ecology, and pathogenesis of these organisms.


2017 ◽  
Vol 28 (2) ◽  
pp. 243-255 ◽  
Author(s):  
Jesper Grud Skat Madsen ◽  
Alexander Rauch ◽  
Elvira Laila Van Hauwaert ◽  
Søren Fisker Schmidt ◽  
Marc Winnefeld ◽  
...  

2020 ◽  
Author(s):  
Saumya Shah ◽  
Shubhra Rastogi ◽  
Divya Vashisth ◽  
Mytrai . ◽  
R K Lal ◽  
...  

Abstract Background In order to understand the developmental modulation of transcriptome and associated gene expression in inter-genomic combinations, a systematic study was planned using two diverse yet closely related species of Ocimum, targeting their hybrid F1 and derived amphidiploid (colchiploid of F1 hybrid). The existing developmental alterations between F1 and amphidiploid through phenotypical and anatomical assessments were analyzed. Results Study of several genes and transcription factors putatively involved in the growth and developmental processes of plants clearly amalgamates the transcriptome data linking the phenotypic differences in F1 and amphidiploid. Additionally, differentially expressed genes of stomatal patterning and development revealed their involvement leading to higher density of stomata in F1 while larger size of stomata in the amphidiploid. Absence of 8,330 transcripts of interspecific hybrid F1 in its amphidiploid and exclusive presence of two detected transcripts in amphidiploid provides a set of genes to analyze the suppressed or activated functions between F1 and amphidiploid. Estimation of chlorophyll, lignin, flavonoid and phenylpropenes (eugenol and methyleugenol) content were correlated with the average FPKM and digital gene expression values in F1 and amphidiploid. Conclusion This is the first investigation which describes the genes and transcription factors influenced by interspecific hybridization leading to developmental changes and alleviation of intergenomic instability in amphidiploid.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Chien-Yueh Lee ◽  
Amrita Chattopadhyay ◽  
Li-Mei Chiang ◽  
Jyh-Ming Jimmy Juang ◽  
Liang-Chuan Lai ◽  
...  

Abstract Integrated analysis of DNA variants and gene expression profiles may facilitate precise identification of gene regulatory networks involved in disease mechanisms. Despite the widespread availability of public resources, we lack databases that are capable of simultaneously providing gene expression profiles, variant annotations, functional prediction scores and pathogenic analyses. VariED is the first web-based querying system that integrates an annotation database and expression profiles for genetic variants. The database offers a user-friendly platform and locates gene/variant names in the literature by connecting to established online querying tools, biological annotation tools and records from free-text literature. VariED acts as a central hub for organized genome information consisting of gene annotation, variant allele frequency, functional prediction, clinical interpretation and gene expression profiles in three species: human, mouse and zebrafish. VariED also provides a novel scoring scheme to predict the functional impact of a DNA variant. With one single entry, all results regarding queried DNA variants can be downloaded. VariED can potentially serve as an efficient way to obtain comprehensive variant knowledge for clinicians and scientists around the world working on important drug discoveries and precision treatments.


2015 ◽  
Author(s):  
Nurul-Syakima Ab Mutalib ◽  
Sri Noraima Othman ◽  
Azliana Mohamad Yusof ◽  
Shahrun Niza Abdullah Suhaimi ◽  
Rohaizak Muhammad ◽  
...  

Background: Papillary thyroid carcinoma (PTC) is the commonest thyroid malignancy originating from the follicle cells in the thyroid. Despite a good overall prognosis, certain high-risk cases as in those with lymph node metastasis (LNM) have progressive disease and poorer prognosis. MicroRNAs are a class of non-protein-coding, 19-24 nucleotides single-stranded RNAs which regulate gene expression and these molecules have been shown to play a role in LNM. The integrated analysis of miRNAs and gene expression profiles together with transcription factors (TFs) has been shown to improve the identification of functional miRNA-target gene-TF relationships, providing a more complete view of molecular events underlying metastasis process. Objectives: We reanalyzed The Cancer Genome Atlas (TCGA) datasets on PTC to identify differentially expressed miRNAs/genes in PTC patients with LNM-positive (LNM-P) versus lymph node negative (LNN) PTC patients and to investigate the miRNA-gene-TF regulatory circuit that regulate LNM in PTC. Results: PTC patients with LNM (PTC LNM-P) has significantly shorter disease-free survival rate compared to PTC patients without LNM (PTC LNN) (Log-rank Mantel Cox test, p = 0.0049). We identified 181 significantly differentially expressed miRNAs in PTC LNM-P versus PTC LNN; 110 were upregulated and 71 were downregulated. The five topmost deregulated miRNAs were hsa-miR-146b, hsa-miR-375, hsa-miR-31, hsa-miR-7-2 and hsa-miR-204. In addition, 395 miRNAs were differentially expressed between PTC LNM-P and normal thyroid while 400 miRNAs were differentially expressed between PTC LNN and normal thyroid. We found 4 significant enrichment pathways potentially involved in metastasis to the lymph nodes namely oxidative phosphorylation (OxPhos), cell adhesion molecules (CAMs), leukocyte transendothelial migration and cytokine-cytokine receptor interaction. OxPhos was the most significantly perturbed pathway (p = 4.70E-06) involving downregulation of 90 OxPhos-related genes. Significant interaction of hsa-miR-301b with HLF, HIF and REL/NFkB transcription factors were identified exclusively in PTC LNM-P versus PTC LNN. Conclusion: We found evidence of five miRNAs differentially expressed in PTC LNM-P. Alteration in OxPhos pathway could be the central event in metastasis to the lymph node in PTC. We postulate that hsa-miR-301b might be involved in regulating LNM in PTC via interactions with HLF, HIF and REL/NFkB. To the best of our knowledge, the roles of these TFs have been studied in PTC but the precise role of this miRNA with these TFs in LNM in PTC has not been investigated.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1227-1227
Author(s):  
Jian Xu ◽  
Zhen Shao ◽  
Kimberly Glass ◽  
Daniel E. Bauer ◽  
Luca Pinello ◽  
...  

Abstract Abstract 1227 Erythropoiesis in mammals occurs in three waves consisting of primitive progenitors in the yolk sac, definitive erythroid precursors in the fetal liver and later in the postnatal bone marrow. The molecular determinants of developmental stage-specific gene expression programs remain largely unknown. Several transcription factors, including GATA1 and TAL1, are essential for normal erythroid development in vivo and are recognized as ‘master’ regulators. These lineage-specifying master regulators, together with other transcriptional co-regulators, act within complexes on chromatin, establish transcriptional networks, and orchestrate the differentiation process. However, it is less clear how master regulators control gene expression programs at different stages of development within the same cell lineage. We reasoned that comparative transcriptome, transcription factor, and epigenetic profiling of closely related cell types corresponding to distinct developmental stages should delineate the regulatory networks that are directly related to the associated gene expression programs. Classification of the trans- and cis-regulatory elements that are either shared or stage-specific should clarify their relative importance and prioritize functional candidates. To explore this approach, we focused on an ex vivo maturation system for human fetal and adult erythropoiesis. Primary human hematopoietic stem/progenitor cells (HSPCs) are propagated and induced for erythroid differentiation ex vivo. We first determined the mRNA expression profiles in both fetal and adult HSPCs and differentiating proerythroblasts (ProEs). Comparative transcriptome profiling revealed distinct gene expression programs at different stages of erythroid maturation. For example, 1039 and 1291 genes linked to distinct functional annotations were differentially expressed (fold change > 1.5, FDR < 0.05) in fetal and adult ProEs, respectively. To investigate the underlying basis of these distinct gene expression programs, we generated genome-wide maps for chromatin state and transcription factor occupancy by a ChIP-seq approach. Specifically, we profiled 9 histone modifications (H3K4me1/me2/me3, H3K9me3, H3K37me3, H3K36me2/me3, H3K9ac, and H3K27ac) and 6 transcription factors (GATA1, TAL1, NFE2, CTCF, RAD21, and RNA polymerase II) in both fetal and adult ProEs. Contrasting the similarities and differences between human fetal and adult erythropoiesis provides important insights into the erythroid gene expression programs and gene regulatory networks operating at different stages of development. We find that gene-distal enhancers, rather than promoters, are marked with highly stage-specific histone modifications and DNase I hypersensitivity, strongly correlate to developmental stage-specific gene expression changes, and are functionally active in a stage-specific manner. The master regulators GATA1 and TAL1 act cooperatively within active enhancers but have little predictive value for stage-specific transcriptional activity. Differential enrichment of consensus motifs for binding of transcription factors within fetal or adult stage-specific enhancers provides a strategy for identifying candidate co-regulators that drive differential gene expression and stage-specificity. By this computational approach and subsequent functional validation, we demonstrate that the interferon regulatory factors IRF2 and IRF6 are essential for activation of adult erythroid gene expression programs in cooperation with master regulators and cohesin-mediator complexes at distal enhancers. Thus, the comparative profiling of red cell development provides critical insights into the ontogeny of human erythropoiesis and temporal regulation of transcriptional networks in a mammalian genome. Disclosures: No relevant conflicts of interest to declare.


Database ◽  
2019 ◽  
Vol 2019 ◽  
Author(s):  
Ganesh Panzade ◽  
Indu Gangwar ◽  
Supriya Awasthi ◽  
Nitesh Sharma ◽  
Ravi Shankar

Abstract Gene regulation is a highly complex and networked phenomenon where multiple tiers of control determine the cell state in a spatio-temporal manner. Among these, the transcription factors, DNA and histone modifications, and post-transcriptional control by small RNAs like miRNAs serve as major regulators. An understanding of the integrative and spatio-temporal impact of these regulatory factors can provide better insights into the state of a ‘cell system’. Yet, there are limited resources available to this effect. Therefore, we hereby report an integrative information portal (Plant Regulomics Portal; PRP) for plants for the first time. The portal has been developed by integrating a huge amount of curated data from published sources, RNA-, methylome- and sRNA/miRNA sequencing, histone modifications and repeats, gene ontology, digital gene expression and characterized pathways. The key features of the portal include a regulatory search engine for fetching numerous analytical outputs and tracks of the abovementioned regulators and also a genome browser for integrated visualization of the search results. It also has numerous analytical features for analyses of transcription factors (TFs) and sRNA/miRNA, spot-specific methylation, gene expression and interactions and details of pathways for any given genomic element. It can also provide information on potential RdDM regulation, while facilitating enrichment analysis, generation of visually rich plots and downloading of data in a selective manner. Visualization of intricate biological networks is an important feature which utilizes the Neo4j Graph database making analysis of relationships and long-range system viewing possible. Till date, PRP hosts 571-GB processed data for four plant species namely Arabidopsis thaliana, Oryza sativa subsp. japonica, Zea mays and Glycine max. Database URL: https://scbb.ihbt.res.in/PRP


Sign in / Sign up

Export Citation Format

Share Document