scholarly journals Environmental Surveillance of Polioviruses in Armenia, Colombia before Trivalent Oral Polio Vaccine Cessation

Viruses ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 775
Author(s):  
María Mercedes González ◽  
Magile C. Fonseca ◽  
Carlos Andrés Rodríguez ◽  
Alejandra María Giraldo ◽  
José Joaquín Vila ◽  
...  

Although acute flaccid paralysis (AFP) surveillance is the “gold standard” for detecting cases of polio, environmental surveillance can provide supplementary information in the absence of paralytic poliomyelitis cases. This study aimed to detect the introduction and/or circulation of wild poliovirus or vaccine-derived polioviruses (VDPV) in wastewater, covering a significant population of Armenia, Colombia, before trivalent oral polio vaccine (OPV) cessation. Between March and September 2015, 24 wastewater samples were collected from eight study sites in eight communes of Armenia, Colombia. Virus detection and characterization were performed using both cell culture (i.e., RD or L20B cells) and RT-PCR. Polioviruses were isolated in 11 (45.8%) of 24 wastewater samples. All isolates were identified as Sabin strains (type 1 = 9, type 3 = 2) by intratypic differentiation. Type 2 poliovirus was not detected in any of the samples. No wild poliovirus or VDPV was detected among the isolates. Non-polio enterovirus was identified in 8.3% (2/24) of the samples. This study revealed the excretion of Sabin poliovirus from OPV-immunized individuals, as well as the absence of VDPV and wild poliovirus in wastewaters of Armenia, Colombia. This confirms that environmental surveillance is an effective method, as an additional support to AFP surveillance, to monitor poliovirus during the OPV-to-IPV (inactivated polio vaccine) transition period.

Vaccines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 870
Author(s):  
Yuri Perepliotchikov ◽  
Tomer Ziv-Baran ◽  
Musa Hindiyeh ◽  
Yossi Manor ◽  
Danit Sofer ◽  
...  

Response to and monitoring of viral outbreaks can be efficiently focused when rapid, quantitative, kinetic information provides the location and the number of infected individuals. Environmental surveillance traditionally provides information on location of populations with contagious, infected individuals since infectious poliovirus is excreted whether infections are asymptomatic or symptomatic. Here, we describe development of rapid (1 week turnaround time, TAT), quantitative RT-PCR of poliovirus RNA extracted directly from concentrated environmental surveillance samples to infer the number of infected individuals excreting poliovirus. The quantitation method was validated using data from vaccination with bivalent oral polio vaccine (bOPV). The method was then applied to infer the weekly number of excreters in a large, sustained, asymptomatic outbreak of wild type 1 poliovirus in Israel (2013) in a population where >90% of the individuals received three doses of inactivated polio vaccine (IPV). Evidence-based intervention strategies were based on the short TAT for direct quantitative detection. Furthermore, a TAT shorter than the duration of poliovirus excretion allowed resampling of infected individuals. Finally, the method documented absence of infections after successful intervention of the asymptomatic outbreak. The methodologies described here can be applied to outbreaks of other excreted viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), where there are (1) significant numbers of asymptomatic infections; (2) long incubation times during which infectious virus is excreted; and (3) limited resources, facilities, and manpower that restrict the number of individuals who can be tested and re-tested.


2020 ◽  
Vol 86 (15) ◽  
Author(s):  
Peng Chen ◽  
Yao Liu ◽  
Haiyan Wang ◽  
Guifang Liu ◽  
Xiaojuan Lin ◽  
...  

ABSTRACT The Polio Endgame Strategy 2019–2023 has been developed. However, more effective and efficient surveillance activities should be conducted with the preparedness of emergence for vaccine-derived poliovirus (VDPV) or wild poliovirus (WPV). We reviewed the impact of the case-based acute flaccid paralysis (AFP) surveillance (1991 to 2018) and environmental surveillance (2011 to 2018) in polio eradication in Shandong province of China. Clinical characteristics of AFP cases and enterovirus (EV) investigation of research samples were assessed. During the period, 10,224 AFP cases were investigated, and 352 sewage samples were collected. The nonpolio AFP rate sustained at over 2.0/100,000 since 1997. Of 10,224 cases, males and young children experienced a higher risk of severe diseases, and 68.5% suffered lower limb paralysis. We collected 1,707 EVs from AFP cases, including 763 polioviruses and 944 nonpolio enteroviruses (NPEVs). No WPV was isolated since 1992. The AFP surveillance showed high sensitivity in detecting 143 vaccine-associated paralytic poliomyelitis (VAPP) cases and 6 VDPVs. For environmental surveillance, 217 (61.6%) samples were positive for poliovirus, and altogether, 838 polioviruses and 2,988 NPEVs were isolated. No WPV was isolated in environmental surveillance, although one VDPV2 was identified. Phylogenetic analysis revealed environmental surveillance had the capacity to detect a large scope of NPEVs. The case-based AFP surveillance will be indispensable for detecting VAPP cases and VDPV circulation in countries using oral polio vaccine. Environmental surveillance is advantageous in identifying EV circulation and responding to ongoing circulating VDPV outbreaks and should be expanded to complement the AFP surveillance. IMPORTANCE Interrupting wild poliovirus transmission and stopping circulating vaccine-derived poliovirus (cVDPV) outbreaks have been proposed as two global goals by the World Health Organization in the Global Polio Eradication Initiative (GPEI). This analysis, based on the 28-year acute flaccid paralysis (AFP) surveillance and 8-year environmental surveillance, provides continued high-quality surveillance performance in achieving the GPEI and detecting the circulation of enterovirus. Given the ongoing cVDPV outbreaks in the world, we present the surveillance capacity of environmental surveillance in capturing enterovirus circulation. The final poliovirus (especially VDPV) elimination has become increasingly complex, and the case-based AFP surveillance alone will lead to difficulties in early detecting dynamics of poliovirus transmission and monitoring the extent of environmental circulation. This study goes beyond previous work to provide a detailed comprehensive evaluation of the enterovirus surveillance and can be used to formulate a set of implementation plan and performance indicators for environmental surveillance.


2016 ◽  
Author(s):  
Michael Famulare ◽  
Christian Selinger ◽  
Kevin A. McCarthy ◽  
Philip A. Eckhoff ◽  
Guillaume Chabot-Couture

AbstractThe oral polio vaccine (OPV) contains live-attenuated polioviruses that induce immunity by causing low virulence infections in vaccine recipients and their close contacts. Widespread immunization with OPV has reduced the annual global burden of paralytic poliomyelitis by a factor of ten thousand or more and has driven wild poliovirus (WPV) to the brink of eradication. However, in instances that have so far been rare, OPV can paralyze vaccine recipients and generate vaccine-derived polio outbreaks. To complete polio eradication, OPV use should eventually cease, but doing so will leave a growing population fully susceptible to infection. If poliovirus is reintroduced after OPV cessation, under what conditions will OPV vaccination be required to interrupt transmission? Can conditions exist where OPV and WPV reintroduction present similar risks of transmission? To answer these questions, we built a multiscale mathematical model of infection and transmission calibrated to data from clinical trials and field epidemiology studies. At the within-host level, the model describes the effects of vaccination and waning immunity on shedding and oral susceptibility to infection. At the between-host level, the model emulates the interaction of shedding and oral susceptibility with sanitation and person-to-person contact patterns to determine the transmission rate in communities. Our results show that inactivated polio vaccine is sufficient to prevent outbreaks in low transmission rate settings, and that OPV can be reintroduced and withdrawn as needed in moderate transmission rate settings. However, in high transmission rate settings, the conditions that support vaccine-derived outbreaks have only been rare because population immunity has been high. Absent population immunity, the Sabin strains from OPV will be nearly as capable of causing outbreaks as WPV. If post-cessation outbreak responses are followed by new vaccine-derived outbreaks, strategies to restore population immunity will be required to ensure the stability of polio eradication.Author SummaryOral polio vaccine (OPV) has played an essential role in the elimination of wild poliovirus (WPV). OPV contains attenuated yet transmissible viruses that can spread from person-to-person. When OPV transmission persists uninterrupted, vaccine-derived outbreaks occur. After OPV is no longer used in routine immunization, as with the cessation of type 2 OPV in 2016, population immunity will decline. A key question is how this affects the potential of OPV viruses to spread within and across communities. To address this, we examined the roles of immunity, sanitation, and social contact in limiting OPV transmission. Our results derive from an extensive review and synthesis of vaccine trial data and community epidemiological studies. Shedding, oral susceptibility to infection, and transmission data are analyzed to systematically explain and model observations of WPV and OPV circulation. We show that in high transmission rate settings, falling population immunity after OPV cessation will lead to conditions where OPV and WPV are similarly capable of causing outbreaks, and that this conclusion is compatible with the known safety of OPV prior to global cessation. Novel strategies will be required to ensure the stability of polio eradication for all time.


2014 ◽  
Vol 2 (2) ◽  
Author(s):  
Jayakrishnan Thayyil ◽  
Thejus Jayakrishnan

In 1988, the World Health Organization (WHO) resolved to eradicate poliomyelitis globally. Since then, the initiative has reported dramatic progress in decreasing the incidence of poliomyelitis and limiting the geographical extent of transmission. 2013 is recorded as the second consecutive year not reporting wild poliovirus (WPV) from India. If the country can retain this position for one more year India will be declared as polio eradicated. What should be the future vaccination strategies? We searched and reviewed the full text of the available published literature on polio eradication via PubMed and examined Internet sources and websites of major international health agencies. The oral polio vaccine (OPV) has been the main tool in the polio eradication program. Once WPV transmission is interrupted, the poliomyelitis will be caused only by OPV. India could expect 1 vaccine-associated paralytic polio per 4.2-4.6 million doses of OPV. Considering the threat of vaccine-derived viruses to polio eradication, WHO urged to develop a strategy to safely discontinue OPV after certification. The ultimate aim is to stop OPV safely and effectively, and eventually substitute with inactivated polio vaccine (IPV). The argument against the use of IPV is its cost. From India, field based data were available on the efficacy of IPV, which was better than OPV. IPV given intradermally resulted in seroconversion rates similar to full-dose intramuscular vaccine. The incremental cost of adopting IPV to replace OPV is relatively low, about US $1 per child per year, and most countries should be able to afford this additional cost.


2003 ◽  
Vol 69 (5) ◽  
pp. 2919-2927 ◽  
Author(s):  
Jagadish M. Deshpande ◽  
Sushmitha J. Shetty ◽  
Zaeem A. Siddiqui

ABSTRACT Eradication of poliomyelitis from large metropolis cities in India has been difficult due to high population density and the presence of large urban slums. Three paralytic poliomyelitis cases were reported in Mumbai, India, in 1999 and 2000 in spite of high immunization coverage and good-quality supplementary immunization activities. We therefore established a systematic environmental surveillance study by weekly screening of sewage samples from three high-risk slum areas to detect the silent transmission of wild poliovirus. In 2001, from among the 137 sewage samples tested, wild poliovirus type 1 was isolated from 35 and wild poliovirus type 3 was isolated from 1. Acute flaccid paralysis (AFP) surveillance indicated one case of paralytic poliomyelitis from the city. Phylogenetic analysis with complete VP1 sequences revealed that the isolates from environmental samples belonged to four lineages of wild polioviruses recently isolated from poliomyelitis cases in Uttar Pradesh and not to those previously isolated from AFP cases in Mumbai. Wild poliovirus thus introduced caused one case of paralytic poliomyelitis. The virus was detected in environmental samples 3 months before. It was found that wild polioviruses introduced several times during the year circulated in Mumbai for a limited period before being eliminated. Environmental surveillance was found to be sensitive for the detection of wild poliovirus silent transmission. Nucleotide sequence analysis helped identify wild poliovirus reservoir areas.


1999 ◽  
Vol 4 (1) ◽  
pp. 50-57 ◽  
Author(s):  
M. Rakoto Andrianarivelo ◽  
L. Rabarijaona ◽  
P. Boisier ◽  
C. Chezzi ◽  
Herve G. Zeller

2004 ◽  
Vol 132 (5) ◽  
pp. 779-780 ◽  
Author(s):  
D. L. HEYMANN ◽  
E. M. DE GOURVILLE ◽  
R. B. AYLWARD

In September 2003 a WHO consultation group on vaccine-derived polioviruses (VDPV) concluded that in order to prevent future generations of paralytic polio after interruption of transmission of wild poliovirus, the use of trivalent oral polio vaccine (OPV) must be stopped [1]. Another important global policy decision along the road to polio eradication thus became possible – cessation of OPV use at some time after eradication. The question now is not whether OPV must be stopped, but rather when.


Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1355
Author(s):  
Magda Rojas-Bonilla ◽  
Angela Coulliette-Salmond ◽  
Hanen Belgasmi ◽  
Kimberly Wong ◽  
Leanna Sayyad ◽  
...  

Environmental surveillance was recommended for risk mitigation in a novel oral polio vaccine-2 (nOPV2) clinical trial (M5-ABMG) to monitor excretion, potential circulation, and loss of attenuation of the two nOPV2 candidates. The nOPV2 candidates were developed to address the risk of poliovirus (PV) type 2 circulating vaccine-derived poliovirus (cVDPV) as part of the global eradication strategy. Between November 2018 and January 2020, an environmental surveillance study for the clinical trial was conducted in parallel to the M5-ABMG clinical trial at five locations in Panama. The collection sites were located upstream from local treatment plant inlets, to capture the excreta from trial participants and their community. Laboratory analyses of 49 environmental samples were conducted using the two-phase separation method. Novel OPV2 strains were not detected in sewage samples collected during the study period. However, six samples were positive for Sabin-like type 3 PV, two samples were positive for Sabin-like type 1 PV, and non-polio enteroviruses NPEVs were detected in 27 samples. One of the nOPV2 candidates has been granted Emergency Use Listing by the World Health Organization and initial use started in March 2021. This environmental surveillance study provided valuable risk mitigation information to support the Emergency Use Listing application.


2021 ◽  
Vol 308 ◽  
pp. 02018
Author(s):  
Yushuo Chen ◽  
Tianrui Yue ◽  
Zixiao Zhang

Poliomyelitis is an exclusively human disease that mainly affects children. Clinical features of poliomyelitis can be varied, from mild illness to the most severe paralysis, and the factor why poliomyelitis has different performances in individuals has been proved strongly correlated with membrane protein CD155. The nervous system shows a special protecting phenomenon against the invasion of poliovirus, and the mechanism is not very clear at present. Vaccines are the main means of preventing and controlling polio, and many different vaccines have been invented in the process of fighting polio. Inactivated polio vaccine (IPV) and oral polio vaccine (OPV) are the two main vaccines. IPV is known for its safety while OPV is widely used in developing countries because of its relatively low cost. This usage also leads to some side effects: vaccine-associated paralytic polio (VAPP) and vaccine-derived poliovirus (VDPV). Now, for polio eradication, the elimination of these two diseases has become particularly important. Thus, a new type of vaccine was created: sequential IPV-OPV with the safety of IPV and the low cost of OPV. This paper will talk about the different polio vaccines and their effects. An enormous difference between people who have gotten the vaccine and people who have not got the vaccine. Comparing the two kinds of people, people who get normal poliovirus, and people who get poliovirus after taking a vaccine, known as VAPP (vaccine-associated paralytic poliomyelitis), the former cannot get full recovery whole life and the latter has a very low possibility. In conclusion, people should take vaccines if it is affordable for them.


2020 ◽  
Vol 41 (4) ◽  
pp. 196
Author(s):  
Margaret M Peel

Epidemics of paralytic poliomyelitis (polio) first emerged in the late 19th and early 20th centuries in the United States and the Scandinavian countries. They continued through the first half of the 20th century becoming global. A major epidemic occurred in Australia in 1951 but significant outbreaks were reported from the late 1930s to 1954. The poliovirus is an enterovirus that is usually transmitted by the faecal–oral route but only one in about 150 infections results in paralysis when the central nervous system is invaded. The Salk inactivated polio vaccine (IPV) became available in Australia in 1956 and the Sabin live attenuated oral polio vaccine (OPV) was introduced in 1966. After decades of stability, many survivors of the earlier epidemics experience late-onset sequelae including post-polio syndrome. The World Health Organization launched the global polio eradication initiative (GPEI) in 1988 based on the easily administered OPV. The GPEI has resulted in a dramatic decrease in cases of wild polio so that only Pakistan and Afghanistan report such cases in 2020. However, a major challenge to eradication is the reversion of OPV to neurovirulent mutants resulting in circulating vaccine-derived poliovirus (cVDPV). A novel, genetically stabilised OPV has been developed recently to stop the emergence and spread of cVDPV and OPV is being replaced by IPV in immunisation programs worldwide. Eradication of poliomyelitis is near to achievement and the expectation is that poliomyelitis will join smallpox as dreaded epidemic diseases of the past that will be consigned to history.


Sign in / Sign up

Export Citation Format

Share Document