scholarly journals Characterization of Klebsiella pneumoniae ST11 Isolates and Their Interactions with Lytic Phages

Viruses ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 1080 ◽  
Author(s):  
Demeng Tan ◽  
Yiyuan Zhang ◽  
Mengjun Cheng ◽  
Shuai Le ◽  
Jingmin Gu ◽  
...  

The bacterial pathogen Klebsiella pneumoniae causes urinary tract infections in immunocompromised patients. Generally, the overuse of antibiotics contributes to the potential development and the spread of antibiotic resistance. In fact, certain strains of K. pneumoniae are becoming increasingly resistant to antibiotics, making infection by these strains more difficult to treat. The use of bacteriophages to control pathogens may offer a non-antibiotic-based approach to treat multidrug-resistant (MDR) infections. However, a detailed understanding of phage–host interactions is crucial in order to explore the potential success of phage-therapy for treatment. In this study, we investigated the molecular epidemiology of nine carbapenemase-producing K. pneumoniae isolates from a local hospital in Shanghai, China. All strain isolates belong to sequence type 11 (ST11) and harbor the blaKPC-2 gene. The S1-PFGE (S1 nuclease pulsed field gel electrophoresis) pattern of the isolates did not show any relationship to the multilocus sequence typing (MLST) profiles. In addition, we characterized phage 117 and phage 31 and assessed the potential application of phage therapy in treating K. pneumoniae infections in vitro. The results of morphological and genomic analyses suggested that both phages are affiliated to the T7 virus genus of the Podoviridae family. We also explored phage–host interactions during growth in both planktonic cells and biofilms. The phages’ heterogeneous lytic capacities against K. pneumoniae strains were demonstrated experimentally. Subsequent culture and urine experiments with phage 117 and host Kp36 initially demonstrated a strong lytic activity of the phages. However, rapid regrowth was observed following the initial lysis which suggests that phage resistant mutants were selected in the host populations. Additionally, a phage cocktail (117 + 31) was prepared and investigated for antimicrobial activity. In Luria Broth (LB) cultures, we observed that the cocktail showed significantly higher antimicrobial activity than phage 117 alone, but this was not observed in urine samples. Together, the results demonstrate the potential therapeutic value of phages in treating K. pneumoniae urinary tract infections.

2019 ◽  
Vol 14 (12) ◽  
pp. 1023-1034 ◽  
Author(s):  
José JC Sidrim ◽  
Bruno R Amando ◽  
Francisco IF Gomes ◽  
Marilia SMG do Amaral ◽  
Paulo CP de Sousa ◽  
...  

Aim: This study proposes the impregnation of Foley catheters with chlorpromazine (CPZ) to control biofilm formation by Escherichia coli, Proteus mirabilis and Klebsiella pneumoniae. Materials & methods: The minimum inhibitory concentrations (MICs) for CPZ and the effect of CPZ on biofilm formation were assessed. Afterward, biofilm formation and the effect of ciprofloxacin and meropenem (at MIC) on mature biofilms grown on CPZ-impregnated catheters were evaluated. Results: CPZ MIC range was 39.06–625 mg/l. CPZ significantly reduced (p < 0.05) biofilm formation in vitro and on impregnated catheters. In addition, CPZ-impregnation potentiated the antibiofilm activity of ciprofloxacin and meropenem. Conclusion: These findings bring perspectives for the use of CPZ as an adjuvant for preventing and treating catheter-associated urinary tract infections.


Antibiotics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 181
Author(s):  
Soo Tein Ngoi ◽  
Cindy Shuan Ju Teh ◽  
Chun Wie Chong ◽  
Kartini Abdul Jabar ◽  
Shiang Chiet Tan ◽  
...  

The increasing prevalence of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae has greatly affected the clinical efficacy of β-lactam antibiotics in the management of urinary tract infections (UTIs). The limited treatment options have resulted in the increased use of carbapenem. However, flomoxef could be a potential carbapenem-sparing strategy for UTIs caused by ESBL-producers. Here, we compared the in vitro susceptibility of UTI-associated ESBL-producers to flomoxef and established β-lactam antibiotics. Fifty Escherichia coli and Klebsiella pneumoniae strains isolated from urine samples were subjected to broth microdilution assay, and the presence of ESBL genes was detected by polymerase chain reactions. High rates of resistance to amoxicillin-clavulanate (76–80%), ticarcillin-clavulanate (58–76%), and piperacillin-tazobactam (48–50%) were observed, indicated by high minimum inhibitory concentration (MIC) values (32 µg/mL to 128 µg/mL) for both species. The ESBL genes blaCTX-M and blaTEM were detected in both E. coli (58% and 54%, respectively) and K. pneumoniae (88% and 74%, respectively), whereas blaSHV was found only in K. pneumoniae (94%). Carbapenems remained as the most effective antibiotics against ESBL-producing E. coli and K. pneumoniae associated with UTIs, followed by flomoxef and cephamycins. In conclusion, flomoxef may be a potential alternative to carbapenem for UTIs caused by ESBL-producers in Malaysia.


Antibiotics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1185
Author(s):  
Sang-Hun Oh ◽  
Young-Rok Kim ◽  
Hee-Soo Park ◽  
Kyu-Man Oh ◽  
Young-Lag Cho ◽  
...  

Klebsiella pneumoniae is one of the important clinical organisms that causes various infectious diseases, including urinary tract infections, necrotizing pneumonia, and surgical wound infections. The increase in the incidence of multidrug-resistance K. pneumoniae is a major problem in public healthcare. Therefore, a novel antibacterial agent is needed to treat this pathogen. Here, we studied the in vitro and in vivo activities of a novel antibiotic LCB10-0200, a siderophore-conjugated cephalosporin, against clinical isolates of K. pneumoniae. In vitro susceptibility study found that LCB10-0200 showed potent antibacterial activity against K. pneumoniae, including the beta-lactamase producing strains. The in vivo efficacy of LCB10-0200 was examined in three different mouse infection models, including systemic, thigh, and urinary tract infections. LCB10-0200 showed more potent in vivo activity than ceftazidime in the three in vivo models against the drug-susceptible and drug-resistant K. pneumoniae strains. Taken together, these results show that LCB10-0200 is a potential antibacterial agent to treat infection caused by K. pneumoniae.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Eshetu Gadisa ◽  
Elazar Tadesse

Abstract Background Medicinal plants have wide medicament application used to prevent and management of many ailments. These plants are used for primary health care in pastoralist communities who are deprived of modern medical care. They possess extensive therapeutics bioactive coupled with varied chemical structures. However, scientific validation of efficacy and safety of plants used to treat the urinary tract infections haven’t been fully exploited. The aim of this study was to evaluate antimicrobial activity and screening phytochemicals of medicinal plants used to treat urinary tract infections. Methods In-vitro experimental study was carried out to evaluate the antimicrobial effect and screening phytochemical of Rumex abyssinicus, Cucumis pustulatus, Discopodium penninervium, Lippia adoensis, Euphorbia depauperata, and Cirsium englerianum. Against drug resistance microbes. 80% methanol was used for extraction of the plant parts. The susceptibility tests were investigated using disc diffusion and broth micro-dilution methods. Results The majority of tested extracts showed antimicrobial activity on two or more drug-resistant bacteria with MIC value (1.0–128.0 μg/ml) and 9–27 mm inhibition zone in diameter. Extracts obtained from C.englerianum and E. depauperate showed more potent antibacterial activity on MRSA and Enterococcus faecalis with IZ 25 and 27 mm respectively. E. coli and K. pneumoniae were inhibited by those extracts with IZ ranging 9–25 mm and 11–27 mm respectively. E.faecalis and K. pneumoniae were more susceptible bacteria to the respective extracts. R. abyssinicus showed promising antifungal effect with had 21 mm IZ and MIC range 16-32 μg/ml on C.albicans. Alkaloids, flavonoids, phenolic and terpenoid were common phytochemical characterized in majority of screened plants. Conclusion Tested extracts exhibited significant antibacterial and antifungal activity. Hence, further structural elucidation of bioactive that inhibited the growth of microbes aforementioned plants may be used as precursors for the synthesis of new antibiotics in the future.


2013 ◽  
Vol 81 (8) ◽  
pp. 3009-3017 ◽  
Author(s):  
Caitlin N. Murphy ◽  
Martin S. Mortensen ◽  
Karen A. Krogfelt ◽  
Steven Clegg

ABSTRACTCatheter-associated urinary tract infections are biofilm-mediated infections that cause a significant economic and health burden in nosocomial environments. Using a newly developed murine model of this type of infection, we investigated the role of fimbriae in implant-associated urinary tract infections by the Gram-negative bacteriumKlebsiella pneumoniae, which is a proficient biofilm former and a commonly isolated nosocomial pathogen. Studies have shown that type 1 and type 3 fimbriae are involved in attachment and biofilm formationin vitro, and these fimbrial types are suspected to be important virulence factors during infection. To test this hypothesis, the virulence of fimbrial mutants was assessed in independent challenges in which mouse bladders were inoculated with the wild type or a fimbrial mutant and in coinfection studies in which the wild type and fimbrial mutants were inoculated together to assess the results of a direct competition in the urinary tract. Using these experiments, we were able to show that both fimbrial types serve to enhance colonization and persistence. Additionally, a double mutant had an additive colonization defect under some conditions, indicating that both fimbrial types have unique roles in the attachment and persistence in the bladder and on the implant itself. All of these mutants were outcompeted by the wild type in coinfection experiments. Using these methods, we are able to show that type 1 and type 3 fimbriae are important colonization factors in the murine urinary tract when an implanted silicone tube is present.


Sign in / Sign up

Export Citation Format

Share Document